簡易檢索 / 詳目顯示

研究生: 陳韻茹
Chen, Yun-Ju
論文名稱: 白色念珠菌對人類抗微生物胜肽LL-37反應之分子機制研究
Study of Molecular Mechanisms of Candida albicans Response to Human Antimicrobial Peptide LL-37
指導教授: 藍忠昱
Lan, Chung-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 74
中文關鍵詞: 白色念珠菌人類抗微生物胜肽
外文關鍵詞: Candida albicans, human antimicrobial peptide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白色念珠菌是人類最重要的真菌感染源之一。通常以共生的方式棲息於健康人體內;對於免疫力低下的患者,則具有侵入性及致病力。LL-37是一種帶正電性的人類抗微生物胜肽,廣泛的研究已指出它具有抑制白色念珠菌的能力,主要是透過對細胞膜的破壞。然而,其他研究也提出,此單一解釋無法涵蓋LL-37複雜的殺菌機制,因此,本研究的目的為探討除了細胞膜破壞以外,LL-37對白色念珠菌的殺菌機制。首先,存活細胞計數及FUN-1染色法被用來測量LL-37的殺菌能力。氧化及滲透壓力也被證明和LL-37殺菌機制有關,尤其是活性氧化物質的累積和抑菌效果成正比。此外,MAP kinase 訊息傳導路徑中的Hog1基因突變株對於LL-37的敏感性上昇,且Hog1 kinase在LL-37處理下會被活化,顯示此訊息傳導路徑參與白色念珠菌對LL-37所引起的壓力反應。最後,由染色質斷裂及細胞凋亡蛋白酶活性的實驗結果得知,LL-37所引起的白色念珠菌死亡並不是經由計畫性細胞凋亡路徑。綜合以上結果,本研究幫助我們進一步了解白色念珠菌對抗微生物胜肽的壓力適應及死亡方式。


    Candida albicans is one of the most important fungal pathogens in humans. C. albicans is a commensal in healthy individuals and can become invasive and pathogenic in the immunocompromised patients. LL-37 is a human cationic antimicrobial peptide that has been reported to exert its antifungal activity against C. albicans. Membrane-disruptive effects of LL-37 have been well investigated. However, several studies indicated that membrane disruption may not reflect the complex processes involved in the killing of microorganisms by LL-37. The main goal of this study is to explore mechanisms, other than membrane disruption that may involve in killing of C. albicans by LL-37. First, killing ability of LL-37 to C. albicans was determined by viable cell counting and FUN-1 staining. Next, oxidative and osmotic stresses stimuli were correlated to cell death, especially the accumulation of reactive oxygen species (ROS). A MAP kinase Hog1 was indicated to be involved in C. albicans stress response that the hog1 homozygous mutant cells were more sensitive to LL-37 treatment compared to wild type cells. Moreover, activation of Hog1 was detected by Western blot after LL-37 treatment. Finally, chromatin fragmentation and the presence of caspase activity were examined. Results showed that LL-37 lead to C. albicans cell death in a non-apoptotic manner. Together, these findings help us to further understand the mechanisms of C. albicans stress-adaptation and C. albicans cell death induced by antimicrobial peptides.

    Table of Contents 中文摘要 I Abstract II Acknowledgement III Table of Contents IV List of Tables VI List of Figures VII Supplement materials VIII Abbreviations IX 1. Introduction 1 Fungal and Candida albicans infections 1 C. albicans virulence and pathogenesis 3 Host immune response to C. albicans infections 5 (1) An overview of innate immunity in C. albicans infection 5 (2) Antimicrobial peptides and LL-37 8 Stress responses in C. albicans 10 (1) Oxidative stress response in C. albicans 11 (2) Osmotic stress response in C. albicans 12 MAP kinase pathways in C. albicans stress responses 13 Apoptosis in C. albicans 15 2. Materials and methods 17 Reagents used in this study 17 C. albicans strains used in this study 17 Media, growth conditions and candidacidal assay 17 ROS formation in C. albicans cells 18 Protein preparation 19 Immunoblot analysis of MAPK activation 19 Reverse transcription (RT)-PCR 20 Determination of SOD activity by gel staining 20 Determination of SOD activity by chemical methods 21 Assessment of caspase activity 22 Analysis of apoptotic markers 22 Statistical analysis 23 3. Results 24 Candidacidal activity of LL-37 24 LL-37-induced morphology change and stress responses of C. albicans 25 Intracellular ROS accumulation of C. albicans induced by LL-37 26 The activity of C. albicans superoxide dismutase does not affected by LL-37 treatment 27 The Hog1-mediated signaling pathway involved in C. albicans response to LL-37 28 LL-37 caused non-apoptotic cell death in C. albicans 30 4. Discussion 33 5. References 39 6. Tables 51 7. Figures 53 8. Supplement materials 69

    1. Aerts, A.M., Francois, I.E., Cammue, B.P., and Thevissen, K. (2008). The mode of antifungal action of plant, insect and human defensins. Cell Mol Life Sci 65, 2069-2079.
    2. Allendorfer, R., Brunner, G.D., and Deepe, G.S., Jr. (1999). Complex Requirements for Nascent and Memory Immunity in Pulmonary Histoplasmosis. J Immunol 162, 7389-7396.
    3. Alonso-Monge, R., Carvaihlo, S., Nombela, C., Rial, E., and Pla, J. (2009). The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology 155, 413-423.
    4. Alonso-Monge, R., Navarro-Garcia, F., Molero, G., Diez-Orejas, R., Gustin, M., Pla, J., Sanchez, M., and Nombela, C. (1999). Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181, 3058-3068.
    5. Andres, M.T., Viejo-Diaz, M., and Fierro, J.F. (2008). Human Lactoferrin Induces Apoptosis-Like Cell Death in Candida albicans: Critical Role of K+-Channel-Mediated K+ Efflux. Antimicrob. Agents Chemother. 52, 4081-4088.
    6. Arana, D.M., Alonso-Monge, R., Du, C., Calderone, R., and Pla, J. (2007). Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol 9, 1647-1659.
    7. Balish, E., Filutowicz, H., and Oberley, T.D. (1990). Correlates of cell-mediated immunity in Candida albicans-colonized gnotobiotic mice. Infect Immun 58, 107-113.
    8. Beauchamp, C., and Fridovich., I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.
    9. Bennett, R.J., and Johnson, A.D. (2005). Mating in Candida albicans and the search for a sexual cycle. Annual Review of Microbiology 59, 233.
    10. Blanco, J.L., and Garcia, M.E. (2008). Immune response to fungal infections. Vet Immunol Immunopathol 125, 47-70.
    Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., and Gustin, M.C. (1993). An osmosensing signal transduction pathway in yeast. Science 259, 1760-1763.
    11. Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3, 238-250.
    12. Buchanan, K.L., and Murphy, J.W. (1998). What Makes Cryptococcus neoformans a Pathogen? Emerg Infect Dis. 4, 71-83.
    13. Calderone, R.A., and Braun, P.C. (1991). Adherence and receptor relationships of Candida albicans. Microbiol Rev 55, 1-20.
    14. Calderone, R.A., and Fonzi, W.A. (2001). Virulence factors of Candida albicans. Trends in Microbiology 9, 327-335.
    15. Cao, Y., Huang, S., Dai, B., Zhu, Z., Lu, H., Dong, L., Cao, Y., Wang, Y., Gao, P., Chai, Y., and Jiang, Y. (2008). Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genetics and Biology In Press, Corrected Proof.
    16. Chen, Y.-C., Chang, S.-C., Luh, K.-T., and Hsieh, W.-C. (2003). Stable susceptibility of Candida blood isolates to fluconazole despite increasing use during the past 10 years. J. Antimicrob. Chemother. 52, 71-77.
    17. Cornely, O.A. (2008). Aspergillus to Zygomycetes: causes, risk factors, prevention, and treatment of invasive fungal infections. Infection 36, 296-313.
    18. Cutler, J.E. (1991). Putative virulence factors of Candida albicans. Annu Rev Microbiol 45, 187-218.
    19. d'Ostiani, C.F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P., and Romani, L. (2000). Dendritic Cells Discriminate between Yeasts and Hyphae of the Fungus Candida albicans: Implications for Initiation of T Helper Cell Immunity In Vitro and In Vivo. J. Exp. Med. 191, 1661-1674.
    20. De Smet, K., and Contreras, R. (2005). Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27, 1337-1347.
    21. den Hertog, A.L., van Marle, J., van Veen, H.A., Van't Hof, W., Bolscher, J.G., Veerman, E.C., and Nieuw Amerongen, A.V. (2005). Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388, 689-695.
    22. den Hertog, A.L., van Marle, J., Veerman, E.C., Valentijn-Benz, M., Nazmi, K., Kalay, H., Grun, C.H., Van't Hof, W., Bolscher, J.G., and Nieuw Amerongen, A.V. (2006). The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387, 1495-1502.
    23. Dodds, M.W.J., Johnson, D.A., and Yeh, C.-K. (2005). Health benefits of saliva: a review. Journal of Dentistry 33, 223-233.
    24. Durr, U.H., Sudheendra, U.S., and Ramamoorthy, A. (2006). LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758, 1408-1425.
    25. Enjalbert, B. (2003). Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14, 1460-1467.
    26. Enjalbert, B. (2006). Role of the Hog1 stress-activated protein kinase in the global transcriptionl response to stress in the fungal pathogen Candida albicans. In Mol Biol Cell, pp. 1018-1032.
    27. Enjalbert, B., Nantel, A., and Whiteway, M. (2003). Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14, 1460-1467.
    28. Enjalbert, B., Smith, D.A., Cornell, M.J., Alam, I., Nicholls, S., Brown, A.J., and Quinn, J. (2006). Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17, 1018-1032.
    29. Enoch, D.A., Ludlam, H.A., and Brown, N.M. (2006). Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55, 809-818.
    30. Fang, F.C. (2004). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2, 820-832.
    31. Feng, Z., Jiang, B., Chandra, J., Ghannoum, M., Nelson, S., and Weinberg, A. (2005). Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J Dent Res 84, 445-450.
    32. Frohner, I.E., Bourgeois, C., Yatsyk, K., Majer, O., and Kuchler, K. (2009). Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71, 240-252.
    33. Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., and Underhill, D.M. (2003). Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197, 1107-1117.
    34. Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3, 710-720.
    35. Gillum, A.M., Tsay, E.Y., and Kirsch, D.R. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-182.
    36. Golec, M. (2007). Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Ann Agric Environ Med 14, 1-4.
    Helmerhorst, E.J., Troxler, R.F., and Oppenheim, F.G. (2001). The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America 98, 14637-14642.
    37. Henry-Stanley, M.J., Garni, R.M., and Wells, C.L. (2004). Adaptation of FUN-1 and calcofluor white stains to assess the ability of viable and nonviable yeast to adhere to and be internalized by cultured mammalian cells. J Microbiol Methods 59, 289-292.
    38. Henzler-Wildman, K.A., Martinez, G.V., Brown, M.F., and Ramamoorthy, A. (2004). Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 43, 8459-8469.
    39. Hirasawa, T., Ashitani, K., Yoshikawa, K., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H., and Shioya, S. (2006). Comparison of transcriptional responses to osmotic stresses induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. Journal of Bioscience and Bioengineering 102, 568-571.
    40. Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66, 300-372.
    41. Hwang, C.S., Rhie, G.E., Oh, J.H., Huh, W.K., Yim, H.S., and Kang, S.O. (2002). Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148, 3705-3713.
    42. Islam, D., Bandholtz, L., Nilsson, J., Wigzell, H., Christensson, B., Agerberth, B., and Gudmundsson, G. (2001). Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7, 180-185.
    43. Jabs, T. (1999). Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology 57, 231-245.
    44. Johansson, J., Gudmundsson, G.H., Rottenberg, M.E., Berndt, K.D., and Agerberth, B. (1998). Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273, 3718-3724.
    45. Kai-Larsen, Y., and Agerberth, B. (2008). The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13, 3760-3767.
    46. Kayingo, G., Kilian, S.G., and Prior, B.A. (2001). Conservation and release of osmolytes by yeasts during hypo-osmotic stress. Arch Microbiol 177, 29-35.
    47. Lai, Y., and Gallo, R.L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30, 131-141.
    48. Lewis, R.E. (2009). Overview of the changing epidemiology of candidemia. Curr Med Res Opin 25, 1732-1740.
    Li, W., Sun, L., Liang, Q., Wang, J., Mo, W., and Zhou, B. (2006). Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell 17, 1802-1811.
    49. Lo, H.-J., Köhler JR, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). Nonfilamentous C. albicans Mutants Are Avirulent. Cell 90, 939-949.
    5. Lopez-Garcia, B., Lee, P.H., Yamasaki, K., and Gallo, R.L. (2005). Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 125, 108-115.
    51. Lupetti, A., Paulusma-Annema, A., Senesi, S., Campa, M., Van Dissel, J.T., and Nibbering, P.H. (2002). Internal thiols and reactive oxygen species in candidacidal activity exerted by an N-terminal peptide of human lactoferrin. Antimicrob Agents Chemother 46, 1634-1639.
    52. Madeo, F., Frohlich, E., and Frohlich, K.U. (1997). A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139, 729-734.
    53. Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H., and Frohlich, K.U. (1999). Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145, 757-767.
    54. Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S.J., Wesselborg, S., and Frohlich, K.U. (2002). A caspase-related protease regulates apoptosis in yeast. Mol Cell 9, 911-917.
    55. Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Frohlich, K.U. (2004). Apoptosis in yeast. Curr Opin Microbiol 7, 655-660.
    56. Martin, G.S., Mannino, D.M., Eaton, S., and Moss, M. (2003). The Epidemiology of Sepsis in the United States from 1979 through 2000. N Engl J Med 348, 1546-1554.
    57. McGettrick, A.F., and O'Neill, L.A. (2004). The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol Immunol 41, 577-582.
    58. McIntyre, K.A., and Galgiani, J.N. (1989). pH and other effects on the antifungal activity of cilofungin (LY121019). Antimicrob Agents Chemother 33, 731-735.
    59. Moradas-Ferreira, P., and Costa, V. (2000). Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death. Redox Rep. 5, 277-285.
    60. Murakami, M., Lopez-Garcia, B., Braff, M., Dorschner, R.A., and Gallo, R.L. (2004). Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172, 3070-3077.
    61. Naglik, J., Albrecht, A., Bader, O., and Hube, B. (2004). Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6, 915-926.
    62. Narasimhan, M.L., Damsz, B., Coca, M.A., Ibeas, J.I., Yun, D.J., Pardo, J.M., Hasegawa, P.M., and Bressan, R.A. (2001). A plant defense response effector induces microbial apoptosis. Mol Cell 8, 921-930.
    63. Narayanan, R., Joyce, W.A., and Greenfield, R.A. (1991). Gastrointestinal candidiasis in a murine model of severe combined immunodeficiency syndrome. Infect Immun 59, 2116-2119.
    64. Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6, 173-182.
    65. Navarro-Garcia, F., Eisman, B., Fiuza, S.M., Nombela, C., and Pla, J. (2005). The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology 151, 2737-2749.
    66. Negredo, A., Monteoliva, L., Gil, C., Pla, J., and Nombela, C. (1997). Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 143 ( Pt 2), 297-302.
    67. Nijnik, A., and Hancock, R.E. (2009). The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16, 41-47.
    68. Ong, P.Y., Ohtake, T., Brandt, C., Strickland, I., Boguniewicz, M., Ganz, T., Gallo, R.L., and Leung, D.Y. (2002). Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347, 1151-1160.
    69. Oren, Z., Lerman, J.C., Gudmundsson, G.H., Agerberth, B., and Shai, Y. (1999). Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341 ( Pt 3), 501-513.
    70. Overhage, J., Campisano, A., Bains, M., Torfs, E.C., Rehm, B.H., and Hancock, R.E. (2008). Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76, 4176-4182.
    71. Perfect, J.R. (1996). Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob. Agents Chemother. 40, 1577-1583.
    72. Pfaller, M.A., and Diekema, D.J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20, 133-163.
    73. Phillips, A.J., Sudbery, I., and Ramsdale, M. (2003). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America 100, 14327-14332.
    74. Pina-Vaz, C., Sansonetty, F., Rodrigues, A.G., Costa-Oliveira, S., Tavares, C., and Martinez-de-Oliveira, J. (2001). Cytometric approach for a rapid evaluation of susceptibility of Candida strains to antifungals. Clin Microbiol Infect 7, 609-618.
    75. Quinn, J., and Brown, A.J.P. (2007). Stress responses in Candida albicans. In Candida: comparative and functional genomics, C. d'Enfert, Hube, B., ed.
    76. Rogers, T.E., and Galgiani, J.N. (1986). Activity of fluconazole (UK 49,858) and ketoconazole against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother 30, 418-422.
    77. Ruan, S.Y., and Hsueh, P.R. (2009). Invasive candidiasis: an overview from taiwan. J Formos Med Assoc 108, 443-451.
    78. Rubin-Bejerano, I., Fraser, I., Grisafi, P., and Fink, G.R. (2003). Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100, 11007-11012.
    79. San Jose, C., Monge, R.A., Perez-Diaz, R., Pla, J., and Nombela, C. (1996). The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol 178, 5850-5852.
    80. Schaller-Bals, S., Schulze, A., and Bals, R. (2002). Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165, 992-995.
    81. Schaller, M., Schackert, C., Korting, H.C., Januschke, E., and Hube, B. (2000). Invasion of Candida albicans Correlates with Expression of Secreted Aspartic Proteinases during Experimental Infection of Human Epidermis. 114, 712-717.
    82. Senyurek, I., Paulmann, M., Sinnberg, T., Kalbacher, H., Deeg, M., Gutsmann, T., Senyurek, I., Paulmann, M., Sinnberg, T., Kalbacher, H., Deeg, M., Gutsmann, T., Hermes, M., Kohler, T., Gotz, F., Wolz, C., Peschel, A., Schittek, B. (2009). Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Antimicrob Agents Chemother 53, 2499-2509.
    83. Serrano, R. (1996). Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165, 1-52.
    84. Shirtliff, M.E., Krom, B.P., Meijering, R.A.M., Peters, B.M., Zhu, J., Scheper, M.A., Harris, M.L., and Jabra-Rizk, M.A. (2009). Farnesol-Induced Apoptosis in Candida albicans. Antimicrob. Agents Chemother., AAC.01551-01508.
    85. Shoham, S., and Levitz, S.M. (2005). The immune response to fungal infections. Br J Haematol 129, 569-582.
    86. Silva, R.D., Sotoca, R., Johansson, B., Ludovico, P., Sansonetty, F., Silva, M.T., Peinado, J.M., and Corte-Real, M. (2005). Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol 58, 824-834.
    87. Smith, D.A., Nicholls, S., Morgan, B.A., Brown, A.J., and Quinn, J. (2004). A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15, 4179-4190.
    88. Soll, D.R., Morrow, B., and Srikantha, T. (1993). High-frequency phenotypic switching in Candida albicans. Trends Genet 9, 61-65.
    89. Tjabringa, G.S., Rabe, K.F., and Hiemstra, P.S. (2005). The human cathelicidin LL-37: a multifunctional peptide involved in infection and inflammation in the lung. Pulm Pharmacol Ther 18, 321-327.
    90. Tonetti, M.S., Imboden, M.A., and Lang, N.P. (1998). Neutrophil migration into the gingival sulcus is associated with transepithelial gradients of interleukin-8 and ICAM-1. J Periodontol 69, 1139-1147.
    91. Ueta, E., Osaki, T., Yoneda, K., and Yamamoto, T. (1993). Functions of salivary polymorphonuclear leukocytes (SPMNs) and peripheral blood polymorphonuclear leukocytes (PPMNs) from healthy individuals and oral cancer patients. Clin Immunol Immunopathol 66, 272-278.
    92. Vachova, L., and Palkova, Z. (2005). Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169, 711-717.
    93. Vylkova, S., Jang, W.S., Li, W., Nayyar, N., and Edgerton, M. (2007). Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell 6, 1876-1888.
    94. Wissing, S., Ludovico, P., Herker, E., Buttner, S., Engelhardt, S. M., Decker, T., Link, A., Proksch, A., Rodrigues, F., Corte-Real, M., Frohlich, K. U., Manns, J., Cande, C., Sigrist, S. J., Kroemer, G., Madeo, F. (2004). An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166, 969-974.
    95. Wunder, D., Dong, J., Baev, D., and Edgerton, M. (2004). Human Salivary Histatin 5 Fungicidal Action Does Not Induce Programmed Cell Death Pathways in Candida albicans. Antimicrob. Agents Chemother. 48, 110-115.
    96. Wysocki, R., and Kron, S.J. (2004). Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J Cell Biol 166, 311-316.
    97. Xu, D., Jiang, B., Ketela, T., Lemieux, S., Veillette, K., Martel, N., Davison, J., Sillaots, S., Trosok, S., Bachewich, C., Bussey, H., Youngman, P., Roemer, T. (2007). Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3, e92.
    98. Yang, Y.L., Wang, A.H., Wang, C.W., Cheng, W.T., Li, S.Y., and Lo, H.J. (2008). Susceptibilities to amphotericin B and fluconazole of Candida species in Taiwan Surveillance of Antimicrobial Resistance of Yeasts 2006. Diagn Microbiol Infect Dis 61, 175-180.
    99. Yeaman, M.R., and Yount, N.Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55, 27-55.
    100. Yoshiyuki Nakagawa, T.K., and Ikuyo Mizuguchi (2003). Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents..pdf. microbiology immunology 47, 395-403.
    101. Zanetti, M. (2004). Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75, 39-48.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE