簡易檢索 / 詳目顯示

研究生: 劉家宜
Liu, Chia-Yi
論文名稱: 微機電環境感測晶片之掉落分析及試驗研究
Drop Analysis and Test of CMOS-MEMS Environmental Sensing Chip
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 方維倫
Fang, Wei-Leun
蔡宏營
Tsai, Hung-Yin
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 88
中文關鍵詞: 有限單元分析微機電環境感測晶片模態分析掉落試驗
外文關鍵詞: Finite element analysis, MEMS, Environmental Sensing Chip, Modal analysis, Drop test
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 掉落試驗(Drop Test)是微機電元件開發過程中具指標性的一環,因為當元件裝載在機台或行動裝置,容易因掉落而受到衝擊。本文目的為利用有限單元軟體ANSYS®建立微機電環境感測晶片模型,進行模態及動態分析。模擬微機電環境感測晶片在運作時受到壓力及衝擊負載時其應力與變形,探討微機電環境感測晶片元件之可靠度,並以掉落試驗來驗證模擬結果。最後藉由田口法進行微機電環境感測晶片配置的最佳化分析,以降低晶片配置中微機電環境感測晶片的黏膠層應力為目標來提升整體晶片配置可靠度。
    本文首先探討微機電壓力計結構,藉由分析不同尺寸壓力計上電極在運作時受到壓力差負載時,其結構變形及應力分布;再以變形程度與實際製程情況討論壓力計的適用範圍及尺寸。接著分別對微機電溫溼計及壓力計元件進行模態分析,發現兩者之共振頻率皆遠大於外在頻率負載,顯示兩者皆不會發生共振而損壞。從微機電環境感測晶片的掉落衝擊分析中發現晶片受到衝擊時,微機電溫濕計有最大的位移及主應力,在微機電壓力計的上下電極間的二氧化矽層兩側也有應力集中的現象。由整體晶片配置模型的衝擊分析中發現黏膠層的最大von Mises應力值接近黏膠層的鍵結強度而可能導致損壞。藉由田口法進行整體晶片配置的最佳化分析可解決黏膠層損壞問題,利用調整幾何結構,以降低整體晶片配置中環境感測晶片黏膠層的最大von Mises應力,結果顯示利用田口法可降低89 %環境感測晶片黏膠層的最大von Mises應力。最後進行掉落試驗以驗證有限單元分析結果。本文所得結果可供微機電環境感測晶片結構及模組配置之參考。


    Drop test is an important method in the development of MEMS devices. Since as the electronic components are installed on machines or mobile devices, they are easily impacted by falling. The purpose of this study is to establish models of MEMS environmental sensing chips for modal and dynamic analyses using the finite element software ANSYS®. These finite element models are used to analyze the reliability of CMOS-MEMS environmental sensing chip under air pressure, vibration and shock. The simulation results were verified by drop test experiments. Finally, the optimization of the overall chip configuration of MEMS environmental sensing chips by the Taguchi method is carried out to reduce the stress of the adhesive of MEMS environmental sensing chip and to improve the reliability in the overall configuration.
    The deformation and stress distribution of MEMS barometer were discussed by analyzing the upper electrode of different size under air pressure. Then, by the modal analysis of MEMS hygrometer, thermometer and barometer, it was found that their fundamental frequencies are far greater than the frequency from external loads, indicating that they would not fail during service condition. From the drop impact analysis of MEMS environmental sensing chip model, it was found that the MEMS hygrometer and thermometer had larger displacement and principal stress when the chip was under impact. The stress concentration was found on both sides of the silicon dioxide layer between the upper and lower electrodes of MEMS barometer. In the drop impact analysis of overall chip configuration, after the optimization by the Taguchi method with adjustment of chip structure, the maximum von Mises stress of adhesive in environmental sensing chip was successfully reduced 89% to prevent the adhesive failure. Finally, a drop impact test was performed to verify the results obtained from finite element analysis. The results presented in this study could give valuable suggestions for the designers of MEMS environmental sensing chip.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VI 第一章 緒論 10 1.1微機電環境感測晶片簡介 11 1.1.1微機電濕度計 12 1.1.2微機電溫度計 14 1.1.3微機電壓力計 14 1.2文獻回顧 15 1.2.1微機電壓力計之受力研究 16 1.2.2振動及模態之研究 16 1.2.3掉落試驗之研究 17 1.2.4最佳化設計之研究 18 1.2.5微機電環境感測晶片 20 1.3研究主題 21 第二章 有限單元分析及最佳化設計 22 2.1有限單元分析流程與原理 22 2.2模態分析 25 2.3微機電環境感測晶片有限單元模型之建立 25 2.3.1微機電壓力計之有限單元模型 26 2.3.2微機電溫濕計之有限單元模型 27 2.3.3微機電環境感測晶片之有限單元模型 27 2.3.4整體晶片配置之有限單元模型 28 2.4微機電壓力計之變形與應力分析 29 2.5微機電環境感測晶片之模態分析 29 2.6微機電環境感測晶片之動態掉落衝擊分析 29 2.7整體晶片配置之動態掉落衝擊分析 31 2.8整體晶片配置之田口法最佳化分析 31 第三章 實驗設備與程序 32 3.1實驗設備 32 3.1.1光學顯微鏡 32 3.1.2高加速度衝擊試驗機台 32 3.1.3掃描式電子顯微鏡(Scanning Electron Microscopy) 32 3.2微機電環境感測晶片掉落試驗 33 第四章 結果與討論 34 4.1微機電壓力計受壓力差之分析結果 34 4.2微機電環境感測晶片之模態分析結果 35 4.3微機電環境感測晶片之掉落衝擊分析結果 36 4.4整體晶片配置之掉落衝擊分析結果 37 4.5整體晶片配置之最佳化田口法分析結果 38 4.6微機電環境感測晶片掉落試驗 39 第五章 結論 41 參考文獻 43 圖表 47

    1.微機電系統與奈米科技,科技大觀園,https://scitechvista.nat.gov.tw/c/s9FP.htm,引用時間:2018/09/24。
    2.微機電系統(MEMS)之介紹,台肥月刊產業報導,http://www.taifer.com.tw/taifer/tf/044003/45.htm,引用時間:2018/09/24。
    3.S. Asano, M. Muroyama, Ta. Nakayama, Y. Hata, Y. Nonomura, S.Tanaka, “3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer,” Sensors, Basel, 25 Oct 2017.
    4.濕度觀測儀器的簡介,交通部中央氣象局官方網站,https://www.cwb.gov.tw/V7/knowledge/encyclopedia/in000.htm。
    5.J. H. Kim, S. M. Hong, J. S. Lee, B. M. Moon, K. Kim, “High Sensitivity Capacitive Humidity Sensor with a Novel Polyimide Design Fabricated by MEMS Technology,” 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, 5-8 Jan 2009.
    6.Y. Wang, D. M. Ke, J. N. Chen, J. Hu, “ Modeling of a CMOS Capacitive Relative Humidity Sensor,” First International Workshop on Education Technology and Computer Science, Wuhan, Hubei, China, 7-8 March 2009.
    7.洪立秉修,用於環境感測集成之溫濕壓力感測晶片,國立清華大學動力機械工程學系碩士論文,2018。
    8.準確測量高度/氣壓變化 - 電容式壓力計應用需求升溫,新通訊 2015 年 1 月號167期《封面故事》https://is.gd/t0OMrG,引用時間:2018/09/25。
    9.W. C. Chuang, D. T. W. Lin, Y. C. Hu, H. L. Lee, C. H. Cheng, P. Z. Chang, N. B. Quyen, “A Method Integrating Optimal Algorithm and FEM on CMOS Residual Stress,” Journal of Mechanics, Vol. 30, No. 2, pp. 123-128, April 2014.
    10.L. Yu, B.J. Kim, E. Meng, “Chronically Implanted Pressure Sensors: Challenges and State of The Field,” Sensors, Basel, Switzerland, 14 Nov 2014.
    11.K. Balavalad, B. G. Sheeparamatti, “A Critical Review of MEMS Capacitive Pressure Sensors,” Sensors & Transducers, Vol. 187, Issue 4, pp. 120-128, April 2015.
    12.G. S. A. Jiménez, M.A. R. Barranca, S. M. Acevedo, J.E. M. Cervantes, M.A. A. -Arce, “Modal analysis of a structure used as a capacitive MEMS accelerometer sensor,” 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Campeche, Mexico, 29 Sep.-3 Oct. 2014.
    13.N. Yusof, B. Bais, B. Y. Majlis, N. Soin, "Sensitivity and Q-Factor Trade-off Analysis of MEMS Pressure Sensor for Bladder Implants," Nanoelectronics Conferences (INEC), IEEE 8th International, pp. 49-50, 2018.
    14.S. Chen, L. Wang, M. Jiang, J. Tang, “A study on reliability of chip scale packages in shock environments,” 14th International Conference on Electronic Packaging Technology, Dalian, China, pp. 921-924, 11-14 Aug. 2013 .
    15.L. Xu, J. Wang, T. Reinikainen, “Numerical Studies of the Mechanical Response of Solder Joint to Drop/Impact Load,” Proceedings of the 5th Electronics Packaging Technology Conference, Singapore, pp. 228-232, 12 Dec. 2003.
    16.D. Y. R. Chong, F. X. Che, J. H. L. Pang, L. Xu, B. S. Xiong, H. J. Toh, B. K. Lim, “Evaluation on Influencing Factors of Board-Level Drop Reliability for Chip Scale Packages (Fine-Pitch Ball Grid Array),” IEEE Transactions on Advanced Packaging, Vol. 31, Issue 1, pp. 66-75, Feb. 2008.
    17.M. Renaud, Z. Wang, M. Jambunathan, S. Matova, R. Elfrink, M. Rovers, M. Goedbloed, C. de Nooijer, R. J. M. Vullers, R. van Schaijk, “Improved Mechanical Reliability of Mems Piezoelectric Vibration Energy Harvesters for Automotive Applications,” 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, pp.568-571, 26-30 January 2014.
    18.S. Liu, X. Wang, B. Ma, Z. Gan, H. Zhang, “Drop Test and Simulation of Portable Electronic Devices,” 6th International Conference on Electronic Packaging Technology, Shenzhen, China, pp.1-4, 30 Aug.-2 Sep. 2005.
    19.黎正中譯,穩健設計之品質工程,台北圖書有限公司,台北,1993。
    20.M. L. Ya, N. Soin, A. N. Nordin, “Design and Optimization of a Low-Voltage Shunt Capacitive RF-MEMS Switch,” Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Cannes, France, pp.1-6, 1-4 April 2014.
    21.R. Tikani, L. Torfenezhad, M. Mousavi, S. Ziaei-Rad, “Optimization of Spiral-Shaped Piezoelectric Energy Harvester Using Taguchi Method,” Journal of Vibration and Control, Vol. 24, No. 7, pp. 4484–4491.
    22.毛威智,具繞折式彈簧結構之CMOS-MEMS電容式麥克風的設計與實現,碩士論文,國立清華大學奈米工程與微系統研究所,2016。
    23.ANSYS, https://www.ansys.com/zh-tw.
    24.R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Application of Finite Element Analysis, 4th ed., Wiley, New York, 2002.
    25.S. Moaveni, Finite Element Analysis Theory and Application with ANSYS, 3rd ed, Upper Saddle River, N.J., Pearson Prentice Hall, 2008.
    26.L. J. Segerlind, Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.
    27.康淵,陳信吉,ANSYS入門,全華科技圖書,新北市,台灣,2005。
    28.王柏村,振動學,全華科技圖書,新北市,台灣,2014。
    29.蕭庭郎,振動學,高立圖書,新北市,台灣,2014。
    30.J. Dolbow and M. Gosz, “Effect of out-of-Plane Properties of a Polyimide Film on the Stress Field in Microelectronic Structures,” Mechanics of Materials, Vol. 23, Issue 4, pp. 311-321, 1996.
    31.J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook, 3th ed., CRC press, Boca Raton, 2001.
    32.呂俊麟,三維異質整合微系統晶片之可靠度分析,碩士論文,國立清華大學動力機械工程學系,新竹,2010。
    33.倪培榮,具繞折式彈簧結構電容式微機電麥克風之可靠度分析,碩士論文,國立清華大學動力機械工程學系,新竹,2018。
    34.C. L. Cheng, M. H. Tsai, W. Fang, “Determining The Thermal Expansion Coefficient of Thin Films for a CMOS MEMS Process Using Test Cantilevers,” Journal of Micromechanics and Microengineering, Vol. 25, No. 2, 22 January 2015.
    35.T. Y. Tee, J. E. Luan, E. Pek, C. T. Lim, Z. W. Zhong, “Novel Numerical and Experimental Analysis of Dynamic Responses under Board Level Drop Test,” 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, Brussels, Belgium, pp. 133-140, 2004.
    36.L. B. Tan, C. W. And, C. T. Lim, V. B. C. Tan, X. Zhang, “Modal and Impact Analysis of Modern Portable Electronic products,” Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, pp. 645-653, 2005.
    37.佐野雅文,晶片尺寸封裝於板層級掉落試驗之不確定性與可靠度分析,碩士論文,國立清華大學動力機械工程學系,新竹,2009。
    38.李彥儒,三維晶片整合封裝掉落試驗可靠度研究,碩士論文,國立清華大學動力機械工程學系,新竹,2012。
    39.鄭昕凱,超細微間距三維晶片對晶片堆疊電子構裝之掉落衝擊可靠度分析,,碩士論文,國立清華大學動力機械工程學系,新竹,2012。
    40.M. L. Wu, J. S. Lan, “Reliability and Failure Analysis of SAC 105 and SAC 1205N Lead-Free Solder Alloys During Drop Test Events,” Microelectronics Reliability, Vol. 80, pp. 213-222, 2018.
    41. A. Zhang, “High Acceleration Board Level Reliability Drop Test Using Dual Mass Shock Amplifier,” IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, pp. 1441-1448, 27-30 May 2014.
    42.P. Lall, K. Dornala, R. Lowe, J. Foley, “Survivability Assessment of Electronics Subjected to Mechanical Shocks up to 25,000g,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, pp. 507-518, 31 May-3 June 2016.
    43.MIL-STD-883J / METHOD 2002.5 / MECHANICAL SHOCK.
    44.C. L. Yeh, Y. S. Lai, “Support excitation scheme for transient analysis of JEDEC board-level drop test,” Microelectronics Reliability, Vol. 46, pp. 626-636, 2006.
    45.S. Kumaraswamy, J. Rakesh, K. N. Amol, “Standardization of Absolute Vibration Level and Damage Factors for Machinery Health Monitoring” Proceedings of Vibration Engineering and Technology of Machinery, pp.16-18. December 2002.
    46.王顗涵,內嵌壓力感測器之微加速度計受振動負載之有限單元分析,碩士論文,國立清華大學動力機械工程學系,新竹,2017。
    47.T. Tsuchiya, A. Inoue, J. Sakata, “Tensile Testing of Insulating Thin Films; Humidity Effect on Tensile Strength of SiO2 Films,” Sensors and Actuators a Physical Vol.82, NO.1, pp. 286-290, May 2000.

    QR CODE