研究生: |
洪裕峰 Hong, Yu-Fong |
---|---|
論文名稱: |
由穿隧電子所引發之氨吸附基轉變 Transformation of adsorbed-NH2 by tunneling electrons |
指導教授: |
羅榮立
Lo, Rong-Li |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 矽(111) 、氨 、亞穩 、穿隧 、電子 、非彈性 、解離 |
外文關鍵詞: | Si(111), NH3, metastable, tunnel, electron, inelastic, dissociate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氨分子在室溫Si ( 111 )-7 × 7表面產生解離吸附,分裂產物H2N吸附於矽adatom或矽rest atom上。H2N被證實吸附在矽adatom的形成機率是12.1 %;且在樣品負偏壓掃描下,H2N會塞入矽adatom與下層矽原子之間,產生亞穩態,若進一步掃描,亞穩態會解離出一個氫原子。本實驗便是以此為根據,希望藉由非彈性電子穿隧,估計H2N在轉變過程中,是需要幾個電子來達成;同時也仔細觀察亞穩態在兩種偏壓掃描下的變動情形。
由於實驗是在non in-situ下進行,所以先對樣品表面缺陷數量作估計。在高溫熱處理Si ( 111 )- 7 × 7後五小時左右,表面的single defects所佔其半晶胞的比率約是5 %。曝上氨氣後,使用下面的掃描條件觀察轉換事件:正偏壓1.5 V,負偏壓2.0 V,穿隧電流0.05至0.3 nA,掃描時間大約105 s,面積是35 × 35 nm2 ;固定電壓、時間與面積,只改變穿隧電流因素下,分別求出H2N吸附在矽adatom的初態轉變為亞穩態的穿隧電子數目為1個,以及從亞穩態進一步解離出氫原子的末態所需穿隧電子數目亦為1個。從初態經由亞穩態到末態的整個轉變過程是兩個電子事件。
此外在正負偏壓作用下,亞穩態皆有機率回到初態和轉變為末態。原因是不同於初態的電子態密度,僅在費米能階1 eV以下才有大量態密度,亞穩態的電子態密度,在費米能階以上及以下皆存在,同時其能量又比初態及末態都還來得高。基於此兩種情況,解釋了為何初態僅在負偏壓作用才會有反轉產生,而亞穩態卻在正偏壓及負偏壓作用下皆有回到初態及轉變為末態的機會。
An NH3 molecule is dissociatively adsorbed on Si ( 111 )-7 × 7 at room temperature. The dissociated fragment NH2 can be adsorbed on top of either silicon adatom or rest atom. The probability for NH2 to be adsorbed on top of adatom is confirmed to be 12.1 %. Under the scanning of negative sample biases, the atop adsorbed-H2N can be displaced into the backbond of adatom, forming a metastable state. With further scanning of negative sample biases, the metastable state will be transformed into a final and stable state by liberating an H atom. Based on these observations, we want to know how many inelastic tunneling electrons are needed to induce the transformations in our experiments and, in particular, to study the changes of metastable state under the scanning of both polarities of sample bias.
Since our experiments were performed non in-situ, therefore, we first estimated the defect density on Si ( 111 )-7 × 7 surface. About five hours later to the annealing treatment of sample, we found the density of single defect (one dark adatom in a half cell) was about 5%. After the dosage of NH3, we used the following scanning conditions to acquire STM images: 1.5 V and □ 2.0 V of sample bias, 0.05 to 0.3 nA of tunneling current, frame time of about 105 s, and scanning area of 35 × 35 nm2. By varying the tunneling current and fixing the other conditions, we found that the number of tunneling electron to induce both transformations, the initial state (adatom-adsorbed NH2) to metastable state and metastable state to final state, is unit. In other words, the whole transformation from initial state to final state is a two-electron process.
On the other hand, we also observed that metastable state has the probability to return back to the initial state or to transform into the final state under the scanning of positive or negative sample bias. This can be interpreted by their potential energies and DOS structures near Fermi level. The initial state only has intense occupied DOS below 1 eV and almost has no unoccupied DOS from 0 to 3 eV. The metastable state has DOS on the both sides of Fermi level, but its potential energy is higher than the other states. These facts explain what we observed in our experiments very well.
Reference
[1] Semiconductors, 2nd Edition, edited by R. A. Smith
(Cambridge Univ. Press, 1979).
[2] J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230
(1984). “The Transistor, A Semi-conductor Triode”; W.
Shockley, Bell Syst. Tech. J. 28, 435 (1949). “The
Theory of p-n Junction in Semiconductors and p-n
Junction Transistor”.
[3] Fundamentals of Modern VLSI Devices, 1st Edition,
edited by Y. Taur, and Tak H. Ning (Cambridge Univ.
Press, 1998). p. 90 ~ 106.
[4] C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys.
Rev. B 65, 045309 (2002). “Thermal nitridation of the Si
(111)-(7 × 7) surface studied by scanning tunneling
microscopy and spectroscopy”.
[5] R. Wolkow and Ph. Avouris, Phys. Rev. Lett. 60, 1049
(1988). “Atom-resolved surface chemistry using scanning
tunneling microscopy”.
[6] B. J. Brook, Nature 400, 312 (1999). “Superhard
Ceramics”.
[7] Semiconductor Devices, Physics and Technology, 2nd
Edition, edited by S. M. Sze (John Wiley & Sons Press,
2002).
[8] S. Kitamura, T. Sato, and M. Iwatsuki, Nature 351, 215
(1991). “Observation of surface reconstruction on
silicon above 800 ℃ using the STM”.
[9] R. M. Feenstra, A. J. Stavin, G. A. Held, and M. A.
Lutz, Phys. Rev. Lett. 66, 3257 (1991). “Surface
diffusion and phase transition on the Ge(111) surface
studied by scanning tunneling microscopy”.
[10] I.-S. Hwang, and J. Golovchenko, Science 258, 1119
(1992). “Observation of Metastable Structural
Excitations and Concerted Atomic Motions on a Crystal
Surface”.
[11] E. Ganz, S. Theiss, I.-S. Hwang, and J. Golovchenko,
Phys. Rev. Lett. 68, 1567 (1992). “Direct measurement
of diffusion by hot tunneling microscopy: Activation
energy, anisotropy, and long jumps”.
[12] L., Andersohn, Th. Berke, U. Köhler, and B.
Voigtländer, J. Vac. Sci. Technol. A 14, 312 (1996).
“Nucleation behavior in molecular beam and chemical
vapor deposition of silicon on Si(111)-(7 × 7)”.
[13] K. Cho, and E. Kaxiras, Europhys. Lett. 39, 287
(1997). “Intermittent diffusion on the reconstructed Si
(111) surface”.
[14] T. Sato, S. Kitamura, and M. Iwatsuki, Surf. Sci.
445, 130 (2000). “Initial adsorption process of Si
atoms on an Si(111)-7 × 7 surface studied by scanning
tunneling microscopy”.
[15] T. Sato, S. Kitamura, and M.Iwatsuki, Vac. Sci.
Technol. A 18, 960 (2000). “Surface diffusion of
adsorbed Si atoms on the Si(111) 7 × 7 surface studied
by atom-tracking scanning tunneling microscopy”.
[16] H. Tokumoto, and M. Iwatsuki, Jpn. J. Appl. Phys. 32,
1368 (1993). “Scanning Tunneling Microscopy of Clean
Silicon Surfaces at Elevated Temperatures”.
[17] A. Ichimiya, Y. Tanaka, ana K. Iwatsuki, Phys. Rev.
Lett. 76, 4721 (1996). “Quantitative Measurements of
Thermal Relaxation of Isolated Silicon Hillocks and
Craters on the Si(111)-(7 × 7) Surface by Scanning
Tunneling Microscopy”.
[18] A. Ichimiya, Y. Tanaka, and K. Hayashi, Surf. Sci.
386, 182 (1997). “Thermal relaxation of silicon islands
and craters on silicon surfaces”.
[19] A. Ichimiya, Y. Tanaka, and K. Hayashi, Surf. Rev.
Lett. 5, 821 (1998). “Relaxation of Nanostructure on
the Si(111)(7 × 7) Surface by High Temperature Scanning
Tunneling Microscopy”.
[20] I.-S. Hwang, R.-L. Lo, and T. T. Tsong, J. Vac. Sci.
Technol. A 16, 2632 (1998). “Study of the dynamics of
point defects at Si(111)- 7 × 7 surfaces with scanning
tunneling microscopy”.
[21] Ph. Avouris and R. Wolkow, Phys. Rev. B 39, 5091
(1989). “Atom-resolved surface chemistry studied by
scanning tunneling microscopy and spectroscopy”.
[22] P. A. Taylor, R. M. Wallace, W. J. Choyke, M. J.
Dresser and J. T. Yates Jr., Surf. Sci. 215, 286 (1989).
“The dissociative adsorption of ammonia on Si(100)”.
[23] M.-H. Kang, Phys. Rev. B 68, 205307 (2003). “Theory
of the site-selective reaction of NH3 with Si(111)-(7 ×
7)”.
[24] K. Cho, E. Kaxiras, and J.D. Joannopoulos, Phys. Rev.
Lett. 79, 5078 (1997).“Theory of Adsorption and
Desorption of H2 Molecules on the Si(111)- (7 × 7)
surface”.
[25] X. Wang, and X. Xu, J. Phys. Chem. C 111, 16974
(2007). “Mechanisms for NH3 Decomposition on the Si
(111)- 7 × 7 Surface: A DFT Cluster Model Study”.
[26] R.-L. Lo, C.-M. Chang, and M.-S. Ho, Phys. Rev. B 76,
113305 (2007). “NH2 and NH bonding sites determined by
STM-induced activation on the NH3-reacted Si(111)-7 × 7
surface”.
[27] W. Ho, J. Chem. Phys. 117, 11033 (2002). “Single-
molecule chemistry”.
[28] G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys.
Rev. Lett. 49, 57 (1982).“Surface Studies by Scanning
Tunneling Microscopy”; and ibid 50, 120 (1983). “7 × 7
Reconstruction on Si(111) Resolved in Real Space”.
[29] Introduction to Scanning Tunneling Microscopy, edited
by J. Chen (Oxford Univ. Press, 1993).
[30] 黃英碩, 科儀新知, 18 (3), 4 (1996). “掃描穿隧顯微術的
原理及應用”.
[31] 徐銘杰, 國立中央大學物理所碩士論文, 第二章, 第9
(2004).
[32] Fundamentals of PHYSICS, 6th Edition, edited by D.
Halliday, R. Resnick, and J. Walker (John Wiley & Sons
Press, 2001). p. 534 ~ 538.
[33] 黃政德, 國立清華大學動力機械工程學系碩士班論文, 第二
章, 第26頁 (2004).
[34] I. Ekvall, E. Wahlström, D. Claesson, H. Olin,and E.
Olsson, Meas. Sci. Technol., 10, 11 (1999).
“Preparation and characterization of electrochemically
etched W tips for STM”.
[35] B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev.
Lett. 78, 4410 (1997).“Single-Molecule Dissociation by
Tunneling Electrons”.
[36] L. Soukiassian, A. J. Mayne, M. Carbone, and G.
Dujardin, Phys. Rev. B 68, 035303 (2003). “Atomic-scale
desorption of H atoms from the Si(100)-2 × 1 : H
surface: Inelastic electron interactions”.
[37] P. A. Sloan, M. F. G. Hedouin, and R. E. Palmer,
Phys. Rev. Lett. 91, 118301 (2003). “Mechanisms of
Molecular Manipulation with the Scanning Tunneling
Microscope at Room Temperature: Chlorobenzene / Si(111)-
(7 × 7)”.
[38] P. A. Sloan, and R. E. Palmer, Nature 434, 367
(2005). “Two-electron
dissociation of single molecules by atomic manipulation
at room temperature”.