簡易檢索 / 詳目顯示

研究生: 廖偉翔
Liao, Wei Siang
論文名稱: 複合式溝槽/銅網毛細平板熱管之可視化實驗
Visualization Experiments on the Flat Plate Heat Pipes with a Composite Groove/Mesh Wick
指導教授: 王訓忠
Wong, Shwin Chung
口試委員: 許文震
簡國祥
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 38
中文關鍵詞: 熱管複合式毛細結構可視化
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用可視化平板熱管,以水為工作流體,量測並觀察雙層200目銅網毛細、溝槽毛細與複合式溝槽/銅網毛細三種熱管的操作特性。在燒結雙層200目銅網的情況下其最大熱傳量為24W,而溝槽毛細熱管的最大熱傳量為14W。採用複合式溝槽/銅網毛細時,蒸發過程在不同加熱量範圍呈現不同模態,熱阻值也呈階段式上升。最大熱傳量可以提高到66W,並且在小於44W時,蒸發熱阻值僅有0.05~0.07 Kcm2/W。更進一步增加傾角至45°及90°時,最大熱傳量仍達44W,而熱阻值與水平擺放時差異不大,如此顯示此種複合式熱管可以大幅提升熱管性能。
    可視化觀察顯示複合式燒結溝槽/銅網毛細可以提供更多的毛細交接處,使其能夠在水平操作下維持在部分乾化卻穩定蒸發的階段。在蒸發區動態行為的表現上較相近於溝槽熱管,工作流體的聚光性端部彼此間具有獨立性。另外,在本文中的所有不同毛細實驗中,皆未觀察到核沸騰的現象。


    This work presents visualization and measurement of the evaporation resistance for operating flat-plate heat pipes with composite groove/mesh wicked. For comparison, experiments are also conducted for heat pipes with a groove or a mesh wick. The performances of these heat pipes are compared under different inclination angles. The parallel, U-shaped grooves with a width of 0.18 mm and a depth of 0.1 mm are sintered with a layer of 200 mesh copper screen covering the top of the grooves. With stepwise increase of heat load Q, the behavior of the working fluid in the groove/mesh wicked was visualized and the evaporator and condenser resistances were measured. Horizontally, different stages are identified with increasing heat load. For Q < 44 W, the evaporator can be fully wetted and the evaporator resistance ranges between 0.05~0.07 Kcm2/W; for 44 W < Q < 66 W, partial dryout appears in the evaporator, with the evaporator resistances jump to about 0.3 Kcm2/W; for Q > 66 W, the evaporator fully dries out with runaway evaporator resistances. At inclination angle of 45°, 60°, or 90°, Qmax could remain at about 44 W. In contrast, Qmax is 14 W for the groove wicked heat pipe and 24 W for the 2 × 200 mesh heat pipe under the horizontal orientation. The results show that the composite groove/mesh wick provides strong capillary force yet low flow resistance to yield high Qmax even for high inclination angles. In addition, no boiling is observed in all present tests.

    目錄 第一章 緒論 1 1.1研究背景 1 1.2熱管結構與工作原理 1 1.3文獻回顧 4 1.3.1 單純溝槽熱管之觀察與量測 4 1.3.2 複合式溝槽熱管之觀察與量測 6 1.4研究動機與目的 9 第二章 實驗設備與方法 10 2.1實驗設計 10 2.2實驗設備與架構 10 2.3實驗步驟 15 2.3.1前置作業流程 15 2.3.2實驗流程 17 2.4實驗參數與理論分析 17 2.4.1實驗數據計算方式 17 2.4.2雙層銅網燒結於平板熱管毛細之熱阻計算 19 2.4.3單層200目銅網燒結於0.1mm深度溝槽平板熱管毛細之熱阻計算 20 第三章 結果與討論 21 3.1燒結200目銅網毛細之熱管的熱阻量測 21 3.1.1水平操作狀態下熱阻量測 21 3.1.2蒸發區朝上45°傾角操作狀況 23 3.2溝槽毛細熱管之熱阻量測 23 3.2.1水平操作狀態下之熱阻量測 23 3.2.2水平操作狀態下之可視化觀測 25 3.3複合式溝槽/銅網之操作中熱阻量測 27 3.3.1水平操作狀態下熱阻量測 27 3.3.2水平操作狀態下可視化觀測 30 3.2.3蒸發區朝上45°與90°傾角 34 第四章 結論 36

    [1] K.-T. Lin, S.-C. Wong, Performance degradation of flattened heat pipes, Appl. Therm. Eng. 50 (2013) 46–54.
    [2] G.P. Peterson, An Introduction to Heat Pipes, Modeling, Testing, and Applications, Wiley,1994.
    [3] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
    [4] R.H. Nilson , S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603–1618.
    [5] K. Park, K.S. Lee, Flow and heat transfer characteristics of the evaporating extended meniscus in a micro-capillary channel, Int. J. Heat Mass Transfer 46 (2003) 4587–4594.
    [6] S.-C. Wong, C.-W. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe, Int. J. Heat Mass Transfer 55 (2012) 2229-2234.
    [7] Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Exp. Therm. Fluid Sci. 34 (2010) 190–196.
    [8] F. Lefèvre, J.B. Conrardy, M. Raynaud, J. Bonjour, Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure, Appl. Therm. Eng. 37 (2012) 95-102.
    [9] Y. Li, H.F. He, Z.X. Zeng, Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick, Appl. Therm. Eng. 50 (2013) 342-351.
    [10] S. Maalej, M.C. Zaghdoudi, Experimental and Theoretical analysis on enhanced flat miniature heat pipes with axial capillary grooves and screen meshes, Thermal Issues in Emerging Technologies, ThETA 1, Cairo, Egypt, Jan 3-6th, 2007.
    [11] Y.M. Hung, K.K. Tio, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction, Int. Comm. Heat Mass Transfer 39 (2012) 1146-1153.
    [12] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498–1506.
    [13] S.-C. Wong, Y.-C. Lin, Effect of copper surface wettability on the evaporation performance: tests in a flat-plate heat pipe with visualization, Int. J. Heat Mass Transfer 54 (2011) 3921–3926.
    [14] S.-C. Wong, H.-H. Tseng, S.-H. Chen, Visualization experiments on the condensation process in heat pipe wicks, Int. J. Heat Mass Transfer 68 (2014) 625-632.
    [15] 鄭憲昇,毛細具縱向親水性變化之平板熱管可視化實驗,國立清華大學碩士論文,2013。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE