研究生: |
廖偉翔 Liao, Wei Siang |
---|---|
論文名稱: |
複合式溝槽/銅網毛細平板熱管之可視化實驗 Visualization Experiments on the Flat Plate Heat Pipes with a Composite Groove/Mesh Wick |
指導教授: |
王訓忠
Wong, Shwin Chung |
口試委員: |
許文震
簡國祥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 熱管 、複合式毛細結構 、可視化 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用可視化平板熱管,以水為工作流體,量測並觀察雙層200目銅網毛細、溝槽毛細與複合式溝槽/銅網毛細三種熱管的操作特性。在燒結雙層200目銅網的情況下其最大熱傳量為24W,而溝槽毛細熱管的最大熱傳量為14W。採用複合式溝槽/銅網毛細時,蒸發過程在不同加熱量範圍呈現不同模態,熱阻值也呈階段式上升。最大熱傳量可以提高到66W,並且在小於44W時,蒸發熱阻值僅有0.05~0.07 Kcm2/W。更進一步增加傾角至45°及90°時,最大熱傳量仍達44W,而熱阻值與水平擺放時差異不大,如此顯示此種複合式熱管可以大幅提升熱管性能。
可視化觀察顯示複合式燒結溝槽/銅網毛細可以提供更多的毛細交接處,使其能夠在水平操作下維持在部分乾化卻穩定蒸發的階段。在蒸發區動態行為的表現上較相近於溝槽熱管,工作流體的聚光性端部彼此間具有獨立性。另外,在本文中的所有不同毛細實驗中,皆未觀察到核沸騰的現象。
This work presents visualization and measurement of the evaporation resistance for operating flat-plate heat pipes with composite groove/mesh wicked. For comparison, experiments are also conducted for heat pipes with a groove or a mesh wick. The performances of these heat pipes are compared under different inclination angles. The parallel, U-shaped grooves with a width of 0.18 mm and a depth of 0.1 mm are sintered with a layer of 200 mesh copper screen covering the top of the grooves. With stepwise increase of heat load Q, the behavior of the working fluid in the groove/mesh wicked was visualized and the evaporator and condenser resistances were measured. Horizontally, different stages are identified with increasing heat load. For Q < 44 W, the evaporator can be fully wetted and the evaporator resistance ranges between 0.05~0.07 Kcm2/W; for 44 W < Q < 66 W, partial dryout appears in the evaporator, with the evaporator resistances jump to about 0.3 Kcm2/W; for Q > 66 W, the evaporator fully dries out with runaway evaporator resistances. At inclination angle of 45°, 60°, or 90°, Qmax could remain at about 44 W. In contrast, Qmax is 14 W for the groove wicked heat pipe and 24 W for the 2 × 200 mesh heat pipe under the horizontal orientation. The results show that the composite groove/mesh wick provides strong capillary force yet low flow resistance to yield high Qmax even for high inclination angles. In addition, no boiling is observed in all present tests.
[1] K.-T. Lin, S.-C. Wong, Performance degradation of flattened heat pipes, Appl. Therm. Eng. 50 (2013) 46–54.
[2] G.P. Peterson, An Introduction to Heat Pipes, Modeling, Testing, and Applications, Wiley,1994.
[3] S.W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, 1976.
[4] R.H. Nilson , S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603–1618.
[5] K. Park, K.S. Lee, Flow and heat transfer characteristics of the evaporating extended meniscus in a micro-capillary channel, Int. J. Heat Mass Transfer 46 (2003) 4587–4594.
[6] S.-C. Wong, C.-W. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe, Int. J. Heat Mass Transfer 55 (2012) 2229-2234.
[7] Y. Tang, D. Deng, L. Lu, M. Pan, Q. Wang, Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera, Exp. Therm. Fluid Sci. 34 (2010) 190–196.
[8] F. Lefèvre, J.B. Conrardy, M. Raynaud, J. Bonjour, Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure, Appl. Therm. Eng. 37 (2012) 95-102.
[9] Y. Li, H.F. He, Z.X. Zeng, Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick, Appl. Therm. Eng. 50 (2013) 342-351.
[10] S. Maalej, M.C. Zaghdoudi, Experimental and Theoretical analysis on enhanced flat miniature heat pipes with axial capillary grooves and screen meshes, Thermal Issues in Emerging Technologies, ThETA 1, Cairo, Egypt, Jan 3-6th, 2007.
[11] Y.M. Hung, K.K. Tio, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction, Int. Comm. Heat Mass Transfer 39 (2012) 1146-1153.
[12] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498–1506.
[13] S.-C. Wong, Y.-C. Lin, Effect of copper surface wettability on the evaporation performance: tests in a flat-plate heat pipe with visualization, Int. J. Heat Mass Transfer 54 (2011) 3921–3926.
[14] S.-C. Wong, H.-H. Tseng, S.-H. Chen, Visualization experiments on the condensation process in heat pipe wicks, Int. J. Heat Mass Transfer 68 (2014) 625-632.
[15] 鄭憲昇,毛細具縱向親水性變化之平板熱管可視化實驗,國立清華大學碩士論文,2013。