研究生: |
曾盈智 Tseng, Ying-Chih |
---|---|
論文名稱: |
On the coincidence of the Shapley value and the nucleolus 夏普利值與核仁重合之研究 |
指導教授: |
張企
Chang, Chih |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 夏普利值 、核仁 、重合區域 |
外文關鍵詞: | Shapley value, nucleolus, coincidence region, BP region, BT region |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
夏普利值(Shapley value)與核仁(nucleolus)是合作對局論中兩個重要的解。本篇論文想研究的是,什麼情況下這兩個解會相等。
若一個對局的夏普利值與核仁相等,則我們稱這個對局滿足重合特性(coincidence property)。一個重合區域(coincidence region) 是指由ㄧ些滿足重合特性的對局所形成的凸錐體。在這篇論文裡我們提出了兩種造出重合區域方法。第ㄧ種方法造出了許多重合區域,我們稱為BP region。每ㄧ個BP region裡的對局稱為BP game。就我們所知,在文獻上所談到的所有滿足重合特性的對局都是BP game。我們也研究了BP region的數學性質,諸如兩個BP region相等的充分必要條件、一個BP region是MBP region (MBP region是指不會嚴格包含於任一個BP region的BP region) 的充分必要條件等等。
然而,既使只考慮三人對局,滿足重合特性的對局也不一定是BP game。因此,我們把BP region的想法一般化,得到一種方法來造出重合區域。這些重合區域就稱為BT region。我們證明了每一個BP region都是BT region,也證明所有滿足重合特性的三人對局必定在某個BT region裡。最後,我們提供一個滿足重合特性的四人對局,說明它不在任何一個BT region裡。
[1] Aumann, R.J., Maschler, M., 1964. The bargaining set for cooperative games. Advances in Game Theory. Ed. by M. Drescher, L.S. Shapley and A.W. Tucker. Annals of Mathematics Study No. 52, 443-476.
[2] Brown, D., Housman, D., 1988. Cooperative games on weighted graphs. Internal Report, Worcester Polytechnic Institute, Worcester.
[3] Chang, C., Yang, Y., 2009. On the linearity regions of the nucleolus. preprint.
[4] Chun, Y., Hokari, T., 2007. On the coincidence of the Shapley value and the nucleolus in queueing problems. Seoul Journal of Economics 20, 223-238.
[5] Davis, M., Maschler, M., 1965. The kernel of a cooperative game. Naval Research Logistics Quarterly 12, 223-259.
[6] Kar, A., Mitra, M., Mutuswami, S., 2009. On the coincidence of the prenucleolus and the Shapley value. Mathematical Social Sciences 57, 16-25.
[7] Kohlberg, E., 1971. On the nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 20, 62-66.
[8] Kohlberg, E., 1972. The nucleolus as a solution to a minimization problem. SIAM Journal of Applied Mathematics 23, 34-39.
[9] Kopelowitz, A., 1967. Computation of the kernels of simple games and the nucleolus of n-person games. Research Program in Game Theory and Mathematical Economics. Research Memorandum No. 31.
[10] Maniquet, F., 2003. A characterization of the Shapley value in queueing problems. Journal of Economic Theory 109, 90-103.
[11] Maschler, M., 1992. The bargaining, kernel and nucleolus. Handbook of Game Theory I, 591-667.
[12] Osborne, M. J., Rubinstein, A., 1994. A course in game theory. The MIT Press.
[13] Peleg, B., Sudhölter, P., 2003. Introduction to the theory of cooperative games. Kulwer Academic Publishers.
[14] Schmeidler, D., 1969. The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17, 1163-1170.
[15] Shapley, L. S., 1953. A value for n-person games. In: Contributions to The Theory of Games II, Annals of Mathematics Studies (H. Kuhn and A. W. Tucker edited). Princeton University Press, Princeton, 28, 307-317.
[16] Sobolev, A. I., 1975. The characterization of optimality principles in cooperative games by functional equations. In: Vorobjev NN (ed.) Mathematical methods in the social sciences, Proceedings of a seminar, Issue 6, Vilnius, Institute of Physics and Mathematics, Academy of sciences of the Lithuanian SSR, 94-151 (Russian, English summary).
[17] van den Nouweland, A., Borm, P., Van Golstein Brouwers, W., Groot Bruinderink, R., Tijs, S., 1996. A game theoretic approach to problems in telecommunication. Management Science 42, 294-303.