簡易檢索 / 詳目顯示

研究生: 曾盈智
Tseng, Ying-Chih
論文名稱: On the coincidence of the Shapley value and the nucleolus
夏普利值與核仁重合之研究
指導教授: 張企
Chang, Chih
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 夏普利值核仁重合區域
外文關鍵詞: Shapley value, nucleolus, coincidence region, BP region, BT region
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 夏普利值(Shapley value)與核仁(nucleolus)是合作對局論中兩個重要的解。本篇論文想研究的是,什麼情況下這兩個解會相等。
    若一個對局的夏普利值與核仁相等,則我們稱這個對局滿足重合特性(coincidence property)。一個重合區域(coincidence region) 是指由ㄧ些滿足重合特性的對局所形成的凸錐體。在這篇論文裡我們提出了兩種造出重合區域方法。第ㄧ種方法造出了許多重合區域,我們稱為BP region。每ㄧ個BP region裡的對局稱為BP game。就我們所知,在文獻上所談到的所有滿足重合特性的對局都是BP game。我們也研究了BP region的數學性質,諸如兩個BP region相等的充分必要條件、一個BP region是MBP region (MBP region是指不會嚴格包含於任一個BP region的BP region) 的充分必要條件等等。
    然而,既使只考慮三人對局,滿足重合特性的對局也不一定是BP game。因此,我們把BP region的想法一般化,得到一種方法來造出重合區域。這些重合區域就稱為BT region。我們證明了每一個BP region都是BT region,也證明所有滿足重合特性的三人對局必定在某個BT region裡。最後,我們提供一個滿足重合特性的四人對局,說明它不在任何一個BT region裡。


    Chapter1. INTRODUCTION.....................................1 1.1 The Shapley value and the nucleolus....................1 1.2 Definitions, notations, and some facts.................3 1.3 Summary................................................8 Chapter2. BP REGION.......................................10 2.1 Introduction..........................................10 2.2 A specific class of games.............................11 2.3 Main results..........................................16 2.4 PS* region............................................22 2.5 Symmetric region......................................24 2.6 Examples..............................................28 2.7 Linearity region and BP region........................30 Chapter3. BT REGION.......................................34 3.1 Introduction..........................................34 3.2 Main results..........................................35 3.3 Examples..............................................39 Chapter4. EXTESIONS.......................................49 4.1 Coincidence of the prenucleolus and the Shapley value.49 4.2 Questions for furthur research........................50 REFERENCE CITED...........................................51

    [1] Aumann, R.J., Maschler, M., 1964. The bargaining set for cooperative games. Advances in Game Theory. Ed. by M. Drescher, L.S. Shapley and A.W. Tucker. Annals of Mathematics Study No. 52, 443-476.
    [2] Brown, D., Housman, D., 1988. Cooperative games on weighted graphs. Internal Report, Worcester Polytechnic Institute, Worcester.
    [3] Chang, C., Yang, Y., 2009. On the linearity regions of the nucleolus. preprint.
    [4] Chun, Y., Hokari, T., 2007. On the coincidence of the Shapley value and the nucleolus in queueing problems. Seoul Journal of Economics 20, 223-238.
    [5] Davis, M., Maschler, M., 1965. The kernel of a cooperative game. Naval Research Logistics Quarterly 12, 223-259.
    [6] Kar, A., Mitra, M., Mutuswami, S., 2009. On the coincidence of the prenucleolus and the Shapley value. Mathematical Social Sciences 57, 16-25.
    [7] Kohlberg, E., 1971. On the nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 20, 62-66.
    [8] Kohlberg, E., 1972. The nucleolus as a solution to a minimization problem. SIAM Journal of Applied Mathematics 23, 34-39.
    [9] Kopelowitz, A., 1967. Computation of the kernels of simple games and the nucleolus of n-person games. Research Program in Game Theory and Mathematical Economics. Research Memorandum No. 31.
    [10] Maniquet, F., 2003. A characterization of the Shapley value in queueing problems. Journal of Economic Theory 109, 90-103.
    [11] Maschler, M., 1992. The bargaining, kernel and nucleolus. Handbook of Game Theory I, 591-667.
    [12] Osborne, M. J., Rubinstein, A., 1994. A course in game theory. The MIT Press.
    [13] Peleg, B., Sudhölter, P., 2003. Introduction to the theory of cooperative games. Kulwer Academic Publishers.
    [14] Schmeidler, D., 1969. The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17, 1163-1170.
    [15] Shapley, L. S., 1953. A value for n-person games. In: Contributions to The Theory of Games II, Annals of Mathematics Studies (H. Kuhn and A. W. Tucker edited). Princeton University Press, Princeton, 28, 307-317.
    [16] Sobolev, A. I., 1975. The characterization of optimality principles in cooperative games by functional equations. In: Vorobjev NN (ed.) Mathematical methods in the social sciences, Proceedings of a seminar, Issue 6, Vilnius, Institute of Physics and Mathematics, Academy of sciences of the Lithuanian SSR, 94-151 (Russian, English summary).
    [17] van den Nouweland, A., Borm, P., Van Golstein Brouwers, W., Groot Bruinderink, R., Tijs, S., 1996. A game theoretic approach to problems in telecommunication. Management Science 42, 294-303.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE