研究生: |
曾至孝 Tseng, Chih-Hsiao |
---|---|
論文名稱: |
Hydrothermal/Solvothermal Synthesis of CuInS2 Nano/microstructures and their Optical Properties 以水熱法/溶劑熱法製備多形貌之銅銦硫奈微結構與其光學性質探討 |
指導教授: |
黃暄益
Huang, Michael Hsuan-Yi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 銅銦硫 、水熱 、溶劑熱 、黃銅礦 、中空球 、板狀交疊 |
外文關鍵詞: | CuInS2, hydrothermal, solvothermal, chalcopyrite, hollow sphere, cross-plate-like |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this work, we have synthesized CuInS¬2 with special micro/nanostructures by hydrothermal and solvothermal methods carried out at 180 oC for 12 h. Copper chloride (CuCl2), indium chloride (InCl3) and thioacetamide (TAA) were used as the reagents. When a hydrothermal method was adapted, the hollow spheres with sizes of 300–500 nm and cross-plate-like CuInS2 microstructure with sizes of 100–300 nm were obtain by adding respectively trisodium citrate and citric acid as reductants. These CuInS2 microstructres have rough surfaces composed of small nanoparticles with diameters of 20–50 nm. We have also shown that ethylenediamine can be a good solvent for the co-synthesis of chalcopyrite and wurtzite CuInS2 nanocrystals. The strong interactions between Cu+ and –NH2 species lead to the formation of a wurtzite metastable phase of CuInS¬2. Oleylamine added as a capping agent can be used to control the phase conversion of CuInS2 nanocrystals from small chalcopyrite nanoparticles with sizes of 20–50 nm into large hexagonal wurtzite crystals with sizes of 100–300 nm. All as-synthesized CuInS2 products show light absorption across the entire visible light region. The cation disordering of wurtzite CuInS¬2 crystals make them have a smaller band gap and cause a spectral red shift.
本論文研究共分成兩大部分:第一部分為在溫度180 oC下,以氯化銅(CuCl2)、氯化銦(InCl3) 和硫代硫醯胺(thioacetamide) 為反應物,藉由添加檸檬酸三鈉鹽(trisodium citrate) 或檸檬酸(citric acid) 做為還原劑,利用水熱法生成300–500奈米的中空球和100–300奈米具有板狀交疊的銅銦硫特殊奈微結構;第二部分為在溫度180 oC下,同樣以氯化銅、氯化銦和硫代硫醯胺為反應物,並使用乙二胺(ethylenediamine) 為溶劑,經由簡易的溶劑熱法同時合成出具有兩種結構:黃銅礦(chalcopyrite) 和纖鋅礦(wurtzite) 的銅銦硫混合奈米顆粒。亞銅離子 (Cu+) 和 乙二胺 (–NH2) 之間擁有強烈的螯合作用是生成界穩定的纖鋅礦產物之主要因素。另外,以十八油胺(oleylamine) 做為保護劑進行兩種銅銦硫結構的相轉換。增加十八油胺的劑量可使原本20–50 奈米大小的黃銅礦顆粒轉變為生成較大的100–300 奈米尺寸的六角狀纖鋅礦晶體。所有實驗得到的銅銦硫產物,皆於可見光區擁有強烈的全區吸收,另外由於陽離子在晶體中的隨機排列造成纖鋅礦結構擁有較小的能隙值並且造成光譜吸收上的紅移現象。
(1) Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Sience 1999, 685, 692–698.
(2) Green, M. A. Energy Policy 2000, 28, 989–998.
(3) O’Regan, B.; Gratzel, M. Nature (London) 1991, 353, 737–740.
(4) Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie1, J. D. Science 2001, 293, 1119–1122.
(5) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382–6390.
(6) Contreras, M. A.; Egaas, B.; Ramanathan, K.; Hiltner, J.; Swartzlander, A.; Hasoon, F.; Noufi, R. Prog. PhotoVolt. Res. 1999, 7, 311–316.
(7) Stolt, L.; Hedstrom, J.; Kessler, J.; Ruckh, M.; Velthaus, K. O.; Schock, H. W. Appl. Phys. Lett.1993, 62, 597–599.
(8) Dimmler, B.; Schock, H. W. Prog. Photovoltaics Res. Appl., 1996, 4, 425–433.
(9) Abushama, J. A. M.; Johnston, S.; Moriarty, T.; Teeter, G.; Ramanathan, K.; Noufi, R. Prog. Photovoltaics Res. Appl. 2004, 12, 39–45.
(10) Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; Ward, J.; Duda, A. Prog. Photovoltaics Res. Appl. 2003, 11, 225–230.
(11) Zhang, S. B.; Wei, S. H.; and Zunger, A. J. Appl. Phys., 1998, 83, 3192–3196.
(12) Tell, B.; Shay, J. L.; Kasper, H. M. Phys. Rev. B 1971, 4, 2463–2471.
(13) Bhar, G. C.; Smith, R. C. Phys. Stat. Solidi A, 1972, 13, 157–168.
(14) Haug, F. J.; Rudmann, D.; Bilger, G.; Zogg, H.; Tiwari, A. N. Thin Solid Films 2002, 403, 293–296.
(15) Gordillo, G.; Calderon, C. Sol. Energy Mater. Sol. Cells 2003, 77, 163–173.
(16) Shirakata, S.; Chichibu, S. J. Appl. Phys. 1996, 79, 2043–2054.
(17) Garcia, J. A. Characterization of CuInS2 films for solar cell applications by Raman Spectroscopy, University de Barcelona: Spain, 2003, pp 26.
(18) Birkmire, R. W.; Eser, E. Annu. Rev. Mater. Sci. 1997, 27, 625–653.
(19) Xiao, J,; Xie, Y.; Tang, R,; Qian, Y. J. of Solid State Chem. 2001, 161, 179–183.
(20) Peng, S.; Liang, J.; Zhang, L.; Shi, Y.; Chen, J. J. Cryst. Growth 2007, 305, 99–103.
(21) Nairn, J. J.; Shapiro, P. J.; Twamley, B.; Pounds, T.; Wandruszka, R.; Fletcher, T. R.; Williams, M.; Wang, C.; Norton, M. G. Nano Lett., 2006, 6, 1218–1223.
(22) Choi, S. H.; Kim, E. G.; Hyeon, T. J. Am. Chem. Soc., 2006, 128, 2520–2521.
(23) Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Nat. Mater. 2004, 3, 891–895.
(24) Pan, D.; An, L.; Sun, Z.; Hou, W.; Yang, Y.; Yang, Z.; Lu, Y. J. Am. Chem. Soc. 2008, 130, 5620–5621.