簡易檢索 / 詳目顯示

研究生: 彭進寶
Pang, Chin-Poh
論文名稱: 液晶、磁流體和二氧化矽微顆粒懸浮液軟性物質之線性與非線性光學性質研究
Linear and Nonlinear Optical Properties of Soft Matters: Liquid Crystals, Ferrofluids and Liquids Suspended with Silica Microspheres
指導教授: 呂助增
Lue, Juh-Tzeng
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 151
中文關鍵詞: 液晶磁流體蒙地卡羅模擬表面電漿二次諧波磁光效應
外文關鍵詞: liquid crystal, ferrofluids, Monte Carlo Simulation, surface plasmons, second harmonic generation, magnet-optical effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討三種軟性物質──液晶、磁流體和二氧化矽微顆粒懸浮液──的線性與非線性光學特性,同時以蒙地卡羅模擬法試著了解這些軟性物質在外加電╱磁場下的分子動力效應。
    我們模擬了液晶在外加電場下穿透率隨時間的變化,並以實驗證實。在以激發表面電漿的方式研究液晶在外加電場下的折射率變化時,我們發現,與電極板緊貼的液晶分子受制於強大的附著力,其排列方向幾乎不受到外加電場的影響。
    在磁流體方面,蒙地卡羅法成功地模擬了在不同的外加磁場爬升速率下,磁流體內的奈米磁顆粒會聚集成不同直徑大小的磁性微柱。一般而言,外加磁場的爬升速率越快,所形成的磁微柱直徑越小。在以ATR和鐵磁共振法分別求出Fe3O4磁流體的折射率和磁導率後,我們利用等效介質理論推算不同濃度的法第拉效應旋轉角度,結果與實驗值符合。
    微顆粒懸浮液的非線性光學研究顯示,所測得的垂直穿透二次諧波訊號主要得自於微顆粒表面的氫氣鍵,其強度可以Gouy-Chapman模型估算。隨著二氧化矽微顆粒的脫水現象,其原有的非線性特性也跟著消失,而且無法以重新注入水的方式恢復。我們研究了脫水二氧化矽微顆粒在外加電場下的電光效應,所得的Pockels係數 ,較一般文獻所得的值大了近十倍。


    Assisted with Monte Carlo simulation, linear optical properties of soft matters such as liquid crystals, ferrofluids and liquids suspended with silica microspheres were investigated by transmittance, Faraday rotation and attenuated total reflection by exciting surface plasmons resonance.
    The microscopic structure of a thin liquid crystal film embedded between two glass plates when applying with electric fields was studied by the grand-canonical-ensemble Monte Carlo simulation. The time duration to reach the equilibrium state is successfully verified from the direct experimental measurement of light transmissions. The Kretschmann–Raether and the Otto configurations are implemented to generate surface plasmons and to examine the change of the refractive index of liquid crystals (LCs) by an applied field. The change of the minimum ATR angles does not agree with the calculation based on field-induced refractive-index change suggesting that the orientation of LC molecules adjacent to an electrode surface is unaffected by the external field because of the strong-anchoring effect.
    The aggregation and rearrangement of nanoparticles embedded in a thin cell of ferrofluid at various applied magnetic fields was studied by Monte Carlo simulation. Our model successfully simulate the reported experimental results by which the column size decreases as the ramp speed increases, implying that the time to arrive the final assembling state diminishes for a given final magnetic field. Physical parameters such as dielectric constant and susceptibility of dilute Fe3O4 ferrofluids derived directly from ATR and ferromagnetic resonance, respectively, were exploited to delineate the corresponding Faraday rotation angles with respect to the applied magnetic fields. Theoretical estimation was compared with experimental measurements ensuring that the effective medium theory is admittedly correct.
    Finally, the linear refractive indices of hydrated and dehydrated silica micro-spheres were studied under Kretschmann configuration to excite surface plasmons (SP), while the nonlinear second-order susceptibility was measured in direct transmission. An inconspicuous change for the case of dehydrated silica spheres is expected to be due to the small electro-optic (Pockels) effect, which is measured to have a linear electro-optic coefficients of . The SHG emission comes from the third-order susceptibility , which is a coupling of two photons and the electrostatic field induced by the surface –OH charges as characterized by the Gouy-Chapman model. The vanishing of SH signal from the dehydrated silica results from the loss of -OH group on the particle surfaces. Optical properties of dried silica spheres do not recover to its original hydrated state when pure water is refilled.

    Contents Abstract                               i Acknowledgement iv 1. Introduction 1 1.1 Liquid Crystals 1 1.2 Ferrofluids 4 1.3 Silica Microspheres 8 2. Theories 13 2.1 The Monte Carlo Simulation for the rearrangement of liquid crystals under bias 13 2.2 Monte Carlo Simulation for Ferrofluids 23 2.3 Coherent point Sources for Column Arrays 31 2.4 Ferromagnetic Resonance 34 2.5 Rasa’s Formalism for Dielectric Tensors 35 2.6 Excitation of Surface Plasmons 37 2.7 ATR on Liquid Crystals 41 2.8 The Linear Eectro-optic Effect 48 2.9 Second Harmonic Generation 49 3. Experimental Details 51 3.1 Fabrication of Magnetic Nanoparticles (Ferrofluids) 51 3.2 Fabrication of Micro-sized SiO2 Particle Cell 54 3.3 Experimental Setup for Attenuated Total Reflection 56 3.4 Experimental Setup for Second Harmonic Generation 58 4. Results and Discussions 61 4.1 Monte Carlo Simulation of Nematic Liquid Crystals 61 4.2 Experimental Results of Liquid Crystals 72 4.3 Monte Carlo Simulation of Ferrofluids 77 4.4 Experimental Results of Ferrofluids 88 4.5 Experimental Results of Silica Microspheres 98 4.5.1 Linear Pockels Effect 98 4.5.2 Nonlinear Harmonic Generation 106 5. Conclusions and Future Aspects 118 Appendix 121 A. 3D Monte Carlo Simulation Program (C-Language) 121 B. Triangulation Program (C-Language) 131 C. Mass Center Program (C-Language) 134 D. Interference Program (C-Language) 138 References 141 Autobiography 148

    [71] http://www.luxpop.com/
    [72] C. P. Pang, C. T. Hsieh and J. T. Lue, J. Phys. D: Appl. Phys. 36, 1764 (2003).
    [73] X. Zhao, S. Ong, and K. B. Eisenthal, Chem. Phys. Lett. 202, 513 (1993).
    [74] Landau L. D. and Lifshitz E. M., Electromagnetics of Continuous Media (Oxford: Pergamon) (1960).
    [75] Y.S. Hor andJ.T. Lue, Appl. Phys. B62, 303 (1996).
    [76] J.T. Lue and C.S. Chang, J. Nonlin. Opt. Phys. Mat. 8, 503 (1999) .
    [77] W.C. Huang and J.T. Lue, Phys. Rev. B51,246 (1995).
    [78] C.T. Hsieh, W.L. Huang and J.T. Lue, J. Phys. Chem. of Solids, 63, 733 (2002).
    [79] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanv, H. Yoshimura and K. Nagayama, Nature, 361, 26 (1993).
    [80] P. Jiang, J. F. Bertone, K. S. Hwang and V. L. Colvin, Chem. Mater., 11(8), 2132 (1999).
    [81] C. S. Chang and J. T. Lue, Surf. Sci. 393, 231 (1997).
    [82] P. Sen, C. Scala, and M. Cohen, Geophysics, vol. 46, p. 781, 1981.
    [83] R. L. Dong, T. S. Lin and J. T. Lue, J. Nonlin. Opt. Phys. Mat. 10, 441 (2001).
    [84] X-C. Long, R. A. Myers, and S. R. J. Brueck, Opt. Lett. 19, 1819 (1994).
    [85] J. Kasparian, B. Krämer, J.-P. Dewitz, S. Vadja, R. Rairoux, B. Vezin, V. Boutou, T. Leisner, W. Hübner, J.-P. Wolf, L. Wöste, and K.-H. Bennemann, Phys. Rev. Lett. 78, 2952 (1997).
    [86] D. Carrol and X. H. Zheng, Pure Appl. Opt. 7, L49 (1998).
    [87] R. Snyder, Sep. Sci., 1, 191 (1966).
    [88] A. Agzamkhodzhaev, L. T. Zhuravlev, A. V. Kiselev, and K. Y. Shengeliya, Kolloidn. Zh., 36, 1145 (1974).
    [89] Y. Q. Lue, T. K. Ho, C. P. Pang and J. T. Lue, J. Nonlin. Opt. Phys. Mat. 14, 93 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE