研究生: |
蘇士維 Su, Shih-Wei |
---|---|
論文名稱: |
同步磁阻馬達驅動系統之開發及其無位置感測控制研究 DEVELOPMENT OF A SYNCHRONOUS RELUCTANCE MOTOR DRIVE AND ITS POSITION SENSORLESS CONTROL STUDY |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
許源浴
陳盛基 劉添華 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 140 |
中文關鍵詞: | 同步磁阻馬達 、切換式整流器 、適應換相移位 、最大效率 、弱磁 、再生煞車 、無位置感測控制 、高頻訊號注入 |
外文關鍵詞: | Synchronous reluctance motor, switch-mode rectifier, adaptive commutation shift, maximum efficiency, field-weakening, regenerative braking, position sensorless control, high-frequency signal injection |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製以數位訊號處理器為主之同步磁阻馬達驅動系統與其無位置感測控制研究。首先,探究一些同步磁阻馬達之關鍵事務,包含馬達結構、主導方程式、參數估測、轉子位置偵測、以及換相時刻移位等。接著建構標準同步磁阻馬達驅動系統,並評估其性能。藉由所提適應換相機制獲得良好之驅控性能。換相角考慮馬達鐵損以及磁飽和現象自動設定以得最大效率,亦即最大之單位電流產生轉矩。此外,提出一弱磁換相法,提升馬達在高速區之運轉特性。
接著,開發連網之同步磁阻達驅動系統,市電由所建構之三相六開關四象限切換式整流器供應馬達驅動器系統。所建立可升壓與良好調控之直流鏈電壓,可提升馬達驅動系統之性能,並具有良好之入電電力品質。而再生煞車之能量亦可有效地回送電網。
最後,本論文開發不同高頻訊號注入之無位置感測同步磁阻驅動系統,並進行比較性能評估。首先建構一以弦波高頻訊號注入之馬達驅動系統,提出考慮馬達槽齒效應之具變化頻率高頻訊號注入機制,提升馬達於廣泛速度範圍下之驅控性能。接著,研製高頻方波注入之無位置感測同步磁阻馬達驅動系統。相較於前者,此法能達到較簡化之估測步驟,及較快速之響應。
The thesis is mainly concerned with the development of a DSP-based synchronous reluctance motor (SynRM) drive and the exploration of its position sensorless control. First, some key affairs of a SynRM are explored, including motor structures, governing equations, parameter estimation, rotor position sensing and commutation instant setting, etc. Then, a standard SynRM drive is established and evaluated. Good driving performance is preserved thanks to the proposed adaptive commutation shift approach. Considering the effects of iron loss and magnetic saturation, the commutation angle is automatically set to pursue the maximum efficiency, and thus the maximum torque per ampere (MTPA). In addition, a field-weakening commutation method is also developed to enhance the motor operating characteristics in higher speed region.
Second, the grid-connected SynRM drive is developed. A three-phase six-switch four-quadrant SMR is developed and used to power the motor drive from the mains. The boosted and well-regulated DC-link voltage is established to improve the motor driving performance with good line drawn power quality. Moreover, the regenerative braking with energy being recovered to the utility grid is successfully achieved.
Third, the position sensorless controlled SynRM drives based on different high-frequency injected (HFI) signals are developed and comparatively assessed. The HFI sensorless drive using sinusoidal injected signal is first established. After exploring the slotted harmonic effects, the HFI scheme with changed frequencies is proposed to yield the improved driving performance in wide speed range. Next, the position sensorless control scheme of SynRM using high-frequency square wave injection is developed. The simplified estimation procedure and faster speed response compared to the first one can be obtained.
[1] T. A. Lipo, “Synchronous reluctance machine- A viable alternative for AC drive,” Electric Machine & Power System, vol. 19, no. 6, pp. 659-671, 1991.
[2] T. J. E. Miller, A. Hutton, C. Cossar and D. A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp. 741-749, 1991.
[3] A. Vagati, “The synchronous reluctance solution: a new alternative in AC drives,” in Proc. IEEE IECON, 1994, vol. 1, pp. 1-13.
[4] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[5] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE IAS, 1999, vol. 2, pp. 840-845.
[6] S. M. de Pancorbo, G. Ugalde, J. Poza and A. Egea, “Comparative study between induction motor and synchronous reluctance motor for electrical railway traction applications,” in Proc. IEEE EDPC, 2015, pp. 1-5.
[7] U E. Doğru, N. G. Özçelik, H. Gedik, M. İmeryüz and L. T. Ergene, “Numerical and experimental comparison of TLA synchronous reluctance motor and induction motor,” in Proc. IEEE PEMC, 2016, pp. 619-624.
[8] J. D. Park, C. Kalev and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, 2008.
[9] R. H. Moncada, H. A. Young, B. J. Pavez-Lazo and J. A. Tapia, “A commercial-off- the-shelf synchronous reluctance motor as a generator for wind power applications,” in Proc. IEEE IEMDC, 2015, pp. 6-12.
[10] M. Alnajjar and D. Gerling, “Synchronous reluctance generator with FPGA control of three-level neutral-point-clamped converter for wind power application,” in Proc. IEEE PEMC, 2016, pp. 498-504.
[11] F. N. Jurca, M. Ruba and C. Marţiş, “Design and control of synchronous reluctances motors for electric traction vehicle,” in Proc. IEEE SPEEDAM, 2016, pp. 1144-1148.
[12] V. Kazakbaev, V. Prakht, V. Dmitrievskii and I. Sokolov, “The feasibility study of the application of a synchronous reluctance motor in a pump drive,” in Proc. IEEE ICPDS, 2016, pp. 1-4.
[13] T. Matsuo and T. A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 9, no. 2, pp. 359-365, 1994.
[14] A. Vagati, M. Pastorelli, G. Francheschini and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758-765, 1998.
[15] R. R. Moghaddam, F. Magnussen and C. Sadarangani, “Novel rotor design optimization of Synchronous Reluctance Machine for low torque ripple,” in Proc. IEEE ICEM, 2012, pp. 720-724.
[16] N. Bianchi, M. Degano and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187-195, 2015.
[17] R. R. Moghaddam, F. Magnussen and C. Sadarangani, “Novel rotor design optimization of synchronous reluctance machine for high torque density,” in Proc. IET PEMD, 2012, pp. 1-4.
[18] J. Ikäheimo, J. Kolehmainen, T. Känsäkangas, V. Kivelä and R. R. Moghaddam, “Synchronous high-speed reluctance machine with novel rotor construction,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2969-2975, 2014.
[19] M. Palmieri, M. Perta and F. Cupertino, “Design of a 50.000-r/min synchronous reluctance machine for an aeronautic diesel engine compressor,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3831-3838, 2016.
[20] S. Taghavi and P. Pillay, “A sizing methodology of the synchronous reluctance motor for traction applications,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329-340, 2014.
[21] M. Ferrari, N. Bianchi, A. Doria and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030-3040, 2015.
[22] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762-4769, 2016.
[23] C. M. Spargo, B. C. Mecrow, J. D. Widmer and C. Morton, “Application of fractional-slot concentrated windings to synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1446-1455, 2015.
[24] A. Kilthau and J. M. Pacas, “Parameter-measurement and control of the synchronous reluctance machine including cross saturation,” in Proc. IEEE IAS, 2001, vol. 4, pp. 2302-2309.
[25] S. Yamamoto, K. Tomishige and T. Ara, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 47-56, 2007.
[26] J.-B. Im, W. Kim, K. Kim, C.-S. Jin, J.-H. Choi and J. Lee, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2803-2806, 2009.
[27] Z. Qu, T. Tuovinen and M. Hinkkanen, “Inclusion of magnetic saturation in dynamic models of synchronous reluctance motors,” in Proc. IEEE ICEM, 2012, pp. 994-1000.
[28] K. Yahia, D. Matos, J. O. Estima and A. J. M. Cardoso, “Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses,” in Proc. IEEE SPEEDAM, 2014, pp. 601-606.
[29] M. N. Ibrahim, P. Sergeant and E. M. Rashad, “Relevance of Including Saturation and Position Dependence in the Inductances for Accurate Dynamic Modeling and Control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151-160, 2017.
[30] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[31] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[32] G. Gatto, I. Marongiu, A. Serpi and A. Perfetto, “Predictive control of synchronous reluctance motor drive,” in Proc. IEEE ISIE, 2007, pp. 1147-1152.
[33] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[34] D. D. Rù, M. Morandin, S. Bolognani and M. Castiello, “Model predictive hysteresis current control for wide speed operation of a synchronous reluctance machine drive,” in Proc. IEEE IECON, 2016, pp. 2845-2850.
[35] Y. Inoue, S. Morimoto and M. Sanada, “A novel control scheme for wide speed range operation of direct torque controlled synchronous reluctance motor,” in Proc. IEEE ECCE, 2010, pp. 192-198.
[36] S. Wiedemann and A. Dziechciarz, “Comparative evaluation of DTC strategies for the synchronous reluctance machine,” in Proc. IEEE EVER, 2015, pp. 1-5.
[37] E. M. Rashad, T. S. Radwan and M. A. Rahman, “A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses,” in Proc. IEEE IAS, 2004, vol. 4, pp. 2411-2417.
[38] S. Bolognani, L, Peretti and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, 2011.
[39] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157-2166, 2015.
[40] S. M. Ferdous, P. Garcia, M. A. M. Oninda and M. A. Hoque, “MTPA and field weakening control of synchronous reluctance motor,” in Proc. IEEE ICECE, 2016, pp. 598-601.
[41] H. Kamiyama, Y. Inoue, S. Morimoto and M. Sanada, “Mathematical model of PMSM and SynRM under maximum torque per ampere condition in a stator flux-linkage synchronous frame,” in Proc. IEEE ICEMS, 2016, pp. 1-6.
[42] Z. Qu and M. Hinkkanen, “Loss-minimizing control of synchronous reluctance motors - a review,” in Proc. IEEE ICIT, 2013, pp. 350-355.
[43] I. Kioskeridis and C. Mademlis, “Energy efficiency optimisation in synchronous reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 150, no. 2, pp. 201-209, 2003.
[44] Y. Inoue, S. Morimoto and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115-121, 2011.
[45] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, 2013.
[46] Z. Qu, T. Tuovinen and M. Hinkkanen, “Minimizing losses of a synchronous reluctance motor drive taking into account core losses and magnetic saturation,” in Proc. IEEE EPE ECCE, 2014, pp. 1-10.
[47] T. Lubin, H. Razik and A. Rezzoug, “Magnetic saturation effects on the control of a synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 356-362, 2002.
[48] H. F. Hofmann, S. R. Sanders and A. EL-Antably, “Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066-1072, 2004.
[49] H. A. Zarchi, J. Soltani, G. R. A. Markadeh, M. Fazeli and A. K. Sichani, “Variable structure direct torque control of encoderless synchronous reluctance motor drives with maximized efficiency,” in Proc. IEEE ISIE, 2010, pp. 1529-1535.
[50] S. Kim, S. K. Sul, K. Ide and S. Morimoto, “Maximum efficiency operation of synchronous reluctance machine using signal injection,” in Proc. IEEE ECCE, 2010, pp. 2000-2004.
[51] M. Hengchun, F. C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[52] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[53] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems,” in Proc. IEEE INTELEC, 2011, pp. 1-27.
[54] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[55] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems - part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[56] Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE PESC, 1994, vol. 2, pp. 1158-1163.
[57] H. Mao, D. Boroyevich, A. Ravindra and F. C. Lee, “Analysis and design of high frequency three-phase boost rectifiers,” in Proc. IEEE APEC, 1996, vol. 2, pp. 538-544.
[58] B. Yin, R. Oruganti, S. K. Panda and A. K. S. Bhat, “A simple single-input-single-output (SISO) model for a three-phase PWM rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 620-631, 2009.
[59] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[60] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[61] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two- and three-level converters: a carrier-based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, 2008.
[62] B. Singh, K. Al-Haddad and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999.
[63] M. El-Habrouk, M. K. Darwish and P. Mehta, “Active power filters: a review,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 403-413, 2000.
[64] T. Hanamoto, A. Ghaderi, M. Harada and T. Tsuji, “Sensorless speed control of synchronous reluctance motor using a novel flux estimator based on recursive fourier transformation,” in Proc. IEEE ICIT, 2009, pp. 1-6.
[65] T. Tuovinen, M. Hinkkanen, L. Harnefors and J. Luomi, “Comparison of a reduced-order observer and a full-order observer for sensorless synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1959-1967, 2012.
[66] T. Tuovinen, M. Hinkkanen and J. Luomi, “Analysis and design of a position observer with resistance adaptation for synchronous reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 49, no. 1, pp. 66-73, 2013.
[67] T. Tuovinen and M. Hinkkanen, “Adaptive full-order observer with high- frequency signal injection for synchronous reluctance motor drives,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 181-189, 2014.
[68] H. A. A. Awan, T. Tuovinen, S. E. Saarakkala and M. Hinkkanen, “Discrete-time observer design for sensorless synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3968-3979, 2016.
[69] D. -Q. Nguyen, L. Loron and K. Dakhouche, “High-speed sensorless control of a synchronous reluctance motor based on an extended kalman filter,” in Proc. IEEE EPE ECCE, 2015, pp. 1-10.
[70] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on an extended EMF model and initial position estimation,” in Proc. IEEE IECON, 2003, vol. 3, pp. 2150-2155.
[71] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
[72] K. Kato, M. Tomita, M. Hasegawa, S. Doki, S. Okuma and S. Kato, “Position and velocity sensorless control of synchronous reluctance motor at low speed using disturbance observer for high-frequency extended EMF,” in Proc. IEEE IECON, 2011, pp. 1971-1976.
[73] S. Kondo, Y. Sato, T. Goto, M. Tomita, M. Hasegawa, S. Doki and S. Kato, “Position and velocity sensorless control for synchronous reluctance motor at low speeds and under loaded conditions using high-frequency extended EMF observer and heterodyne detection,” in Proc. IEEE ICEM, 2014, pp. 857-863.
[74] A. Yousefi-Talouki and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motor drives in a wide speed range including standstill,” in Proc. IEEE ICEM, 2016, pp. 1167-1173.
[75] S. J. Kang, J. M. Kim and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1271-1275, 1999.
[76] J. I. Ha, S. J. Kang and S. K. Sul, “Position-controlled synchronous reluctance motor without rotational transducer,” IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1393-1398, 1999.
[77] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[78] J. H. Jang, J. I. Ha, M. Ohto, K. Idle and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[79] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[80] H. W. D. Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[81] S. Kim and S. K. Sul, “Sensorless control of AC motor - Where are we now?,” in Proc. IEEE ICEMS, 2011, pp. 1-6.
[82] S. C. Agarlita, I. Boldea and F. Blaabjerg, “High-frequency-injection-assisted “active-flux”- based sensorless vector control of reluctance synchronous motors, with experiments from zero speed,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1931-1939, 2012.
[83] W. T. Villet, M. J. Kamper, P. Landsmann and R. Kennel, “Evaluation of a simplified high frequency injection position sensorless control method for reluctance synchronous machine drives,” in Proc. IET PEMD, 2012, pp. 1-6.
[84] Á. Oliveira, D. Cavaleiro, R. Branco, H. Hadla and S. Cruz, “An encoderless high-performance synchronous reluctance motor drive,” in Proc. IEEE ICIT, 2015, pp. 2048-2055.
[85] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[86] Y. D. Yoon, S. K. Sul, S. Morimoto and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[87] Y. Zhao, Z. Zhang, C. Ma, W. Qiao and Liyan Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8.
[88] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Elect. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
[89] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.