簡易檢索 / 詳目顯示

研究生: 陳建廷
Chen, Chien-Ting
論文名稱: 濺鍍不同金屬薄膜於染料敏化太陽電池工作電極之特性研究
Study of Dye-sensitized Solar Cell with Sputtered Various Metallic Thin Film on Photoelectrode
指導教授: 吳永俊
Wu, Yung-Chun
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 64
中文關鍵詞: 染料敏化太陽電池金屬薄膜功函數
外文關鍵詞: Dye-sensitized Solar Cell, metal thin film, work function
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由濺鍍不同功函數的鈦、鋁、鈀等金屬薄膜於染料敏化太陽電池的導電玻璃,來改善導電玻璃與多孔性二氧化鈦光電極的介面電阻,並且有效抑制電子與染料、電解液發生逆向複合的機會。
    研究結果顯示,具有高穿透性的低功函數鈦金屬薄膜能有效提升電池元件的特性,鈦金屬高穿透率的特性能挹注太陽入射光捕獲效率;低功函數的性質能與多孔性二氧化鈦光電極形成歐姆接觸且具有阻障層的效果,有效地幫助電子傳輸避免逆向反應的發生。濺鍍金屬鈦薄膜的染料敏化太陽電池相較於未濺鍍金屬的標準電池,在短路電流密度上提升約24%,且轉換效率可達4.65%,相較於標準電池效率(3.9%)改善約20%,在量子效率的表現上,亦比濺鍍金屬鋁、鈀薄膜的電池有顯著地提升。


    In order to improve the interfacial conductance and suppress interfacial recombination between TiO2 porous layer and F-doped SnO2 transparent conductive layer (FTO) of dye-sensitized solar cells (DSSCs), three different work function metal titanium (Ti), aluminum (Al), palladium (Pd) thin-film were deposited by sputtering on FTO. Only for high transmittance and low work function metal Ti can enhance DSSCs photovoltaic properties. High transmittance of Ti thin-film helps the light harvesting efficiency (LHE), and low work function of Ti (4.33 eV), after contacted with porous TiO2 layer was formed proper Ohmic contact and blocking layer. It could help electrons transport into FTO smoothly and prevent the back reaction. The Ti-deposited thin film DSSCs give the significantly improvement of the short-circuit photocurrent density (Jsc) about 24% over that of standard (bare-FTO) cell, finally
    resulting in a 4.65% energy conversion efficiency (η), which is about 20% higher than that of standard one. In incident monochromatic photon-to-current conversion
    efficiency (IPCE) spectra, Ti-deposited DSSCs also reveal higher value than Al and Pd-deposited DSSCs.

    Contents Chapter 1 Introduction 1.1 Background 1 1.2 Overview of Photovoltaic 2 1.3 Motivation 5 Chapter 2 Dye-sensitized Solar Cells 2.1 Introduction 8 2.2 Basic principles of dye-sensitized solar cells 9 2.3 Charge recombination and back reaction 10 2.4 Component of DSSCs 12 2.5 Photovoltaic characterization and analysis 18 Chapter 3 Characteristics of dye-sensitized solar cells with sputtered various metallic thin film on photoelectrode 3.1 Introduction 28 3.2 DSSCs structure and fabrication 29 3.3 Result and Discussion 20 3.4 Conclusion 34 3.5 Sample Characteristic and Experiment Equipment 35 Chapter 4 Flexible Dye-sensitized Solar Cell 4.1 Introduction 49 4.2 Application of Ti thin-film on stainless steel substrate 50 4.3 Plastic Dye-sensitized electrodes prepared by low temperature coating of mesoscopic Titania 51 4.4 Result and Discussion 52 4.5 Conclusions 54 Reference 61

    Reference
    Chapter 1
    [1.1] Energy Information Administration, International Energy Outlook 2006, June 2006 (www.eia.doe.gov/oiaf/ieo/index.html).
    [1.2] BP, Statistical Review of World Energy, June 2006.
    [1.3] Planck, M. Ann. Phy, 4, 1901, 553.
    [1.4] Einstein, A. Ann. Phys, 17, 1905, 132.
    [1.5] Goldmann, A.; Brodsky, J. Ann. Phys, 44, 1914, 849.
    [1.6] Schottky, W. Physik. Z, 31,1930, 913.
    [1.7] Copeland, A. W.; Black, O. D.; Garrett, A. B. Chem. Rev, 31, 1942, 177.
    [1.8] Czochralski, J. Z. Phys. Chem., 92, 1917, 219.
    [1.9] Audubert, R.; Stora, C. Compt. Rend, 194, 1932, 1124
    [1.10] Fuller, C. 10-7-53, Book 24863, Loc. 123-09-01, AT&T Archives, Warren, NJ.
    [1.11] Chapin, D. 1-26-54 & 2-23-54, Book 29349, Loc. 124-11-02, AT&T Archives,
    Warren, NJ.
    [1.12] “Sunlight Converted to Electricity”, Sunday Globe, Aug. 19, 1973, Boston.
    [1.13] Luque, A. IEEE International Symposium on Industrial Electronics, 2007, Vigo,
    Spain.
    [1.14] Luque, A. Prog. Photovoltaics, 9, 2001, 303.
    [1.15] Adapted from www.nrel.gov/pv/thin_film/docs/kaz_best_research_cells.ppt.
    Recent data are from Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.;
    Warta, W. Prog. Photovoltaics, 15, 2007, 35.
    [1.16] B.O’Regan, M. Gratzel, Nature 353, 1991, 737.
    [1.17] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature 261, 1976,
    402.
    62
    [1.18] Cao F, Oskam G, Meyer G, Searson P, J. Phys. Chem. B, 100, 1996, 17021.
    [1.19] Solbrand A et al., J. Phys. Chem. B, 101, 1997, 2514.
    [1.20] Petra J. Cameron and Laurence M. Peter, J. Phys. Chem. B, 2003, 107, 14394.
    [1.21] Jiangbin Xia, Naruhiko Masaki, Kejian Jiang, and Shozo Yanagida, J. Phys.
    Chem. B, 2006, 110, 25222.
    [1.22] Ryo Hattori, Hajime Goto, Thin Solid Films, 515, 2007, 8045.
    [1.23] J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, Appl. Phys. Lett., 79,
    2001, 2085.
    [1.24] K. Ikeue, H. Yamashita, M. Anpo, Chem. Lett., 1999, 1135.
    [1.25] H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M.A. Fox, M. Anpo, J.
    Catal., 158, 1996, 97.
    [1.26] P.K. Song, Y. Irie, S. Ohno, Y. Sato, Y. Shigesato, Jpn. J. Appl. Phys., 43,
    2004, L442.
    [1.27] S. Ohno, D. Sato, M. Kon, M. Yoshikawa, K. Suzuki, P. Frach, Y. Shigesato,
    Thin Solid Films, 445, 2003, 207.
    [1.28] P.K. Song, M. Yamagishi, H. Odaka, Y. Shigesato, Jpn. J. Appl. Phys., 42,
    2003, L1529.
    [1.29] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, S. Yoshikawa, Sol. Energy
    Mater. Sol. Cells, 91, 2007, 1176.
    [1.30] Y.Yoshida, S. Tokashiki, K. Kubota, R. Shiratuchi, Y. Yamaguchi, M. Kono, S.
    Hayase, Sol. Energy Mater. Sol. Cells, 92, 2008, 646.
    Chapter 2
    [2.1] Tachibana Y et al., J. Phys. Chem, 100, 1996, 20056
    [2.2] Tachibana Y et al., J. Phys. Chem B, 104, 2000, 1198.
    [2.3] Huber R et al., J. Phys. Chem. B, 104, 2000, 8995.
    [2.4] Nazeeruddin Md et al., J. Am. Chem. Soc, 115, 1993, 6382
    63
    [2.5] Huang S et al., J. Phys. Chem. B, 101, 1997, 2576.
    [2.6] Liu Y, Hagfeldt A, Xiao X, Lindquist S, Sol. Energy Mater. Sol. Cells, 55, 1998,
    267.
    [2.7] Hara K et al., Sol. Energy Mater. Sol. Cells 70, 2001, 151.
    [2.8] Nazeeruddin Md et al., J. Am. Chem. Soc. 115, 1993, 6382.
    [2.9] Vlachopoulos N, Liska P, Augustynski J, Gr¨atzel M, J. Am. Chem. Soc, 110,
    1988, 1216.
    Chapter 3
    [3.1] K. Onoda, S. Ngamsinlapasathian, T. Fujieda, S. Yoshikawa, Sol. Energy Mater.
    Sol. Cells, 91, 2007, 1176.
    [3.2] A. Andersson, N. Johansson, P. BrGms, N. Yu, D. Lupo, and W. R. Salaneck,
    Adv. Mater., 10, 1998, 859.
    [3.3] Michael Grätzel, Nature, 414, 2001, 338.
    [3.4] Amy L. Linsebigler, Guangquan Lu, John T. Yates, Chem. Rev., 95, 1995, 735
    [3.5] M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R Humphry-Baker,
    P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon,
    C.A. Bignozzi, M. Gratzel, J. Am. Chem.Soc., 123, 2001, 1613.
    [3.6] K.Hara, H. Sugihhara,Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, H.
    Arakawa, Langmuir, 17, 2001, 5992.
    Chapter 4
    [4.1] D. Zhang, T. Yoshida, and H. Minoura, Adv. Mater. (Weinheim, Ger.), 15, 2003,
    814.
    [4.2] H. Lindström, A. Hormberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt,
    J.Photochem. Photobiol., A, 145, 2001, 107.
    [4.3] G. Boschloo, H. Lindström, E. Magnusson, A. Hormberg, and A. Hagfeldt,
    J.Photochem. Photobiol., A, 148, 2002, 11.
    64
    [4.4] T. Miyasaka, Y. Kijitoril, T. N. Murakami, M. Kimura, and S. Uegusa, Chem.
    Lett., 31, 2002, 1250.
    [4.5] N.-G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y.-J. Shin, Ad
    v.Mater. (Weinheim, Ger.), 17, 2005, 2349.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE