簡易檢索 / 詳目顯示

研究生: 楊穎鋒
Yang, Ying-Fang
論文名稱: Assessment the amino acid substitution tolerance of a model protein containing the CSαβ motif
具CSαβ motif之模型蛋白質對氨基酸取代之耐受性研究
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 126
中文關鍵詞: 植物防禦素蛋白質工程蛋白質鷹架蛋白質結構穩定性系統性丙氨酸置換
外文關鍵詞: cysteine-stabilized alpha beta motif, CSab motif, plant defensin, alanine scan, structural stability, enzyme inhibition, protein scaffold, protein engineering
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The protein scaffold is a peptide framework with a high tolerance of residue modifications. The cysteine-stabilized alpha beta□motif (CSab□□) consists of an alpha-helix and an anti-parallel triple-stranded beta-sheet connected by two pairs of disulfide bridges. The protein containing the motif share low sequence identity but high structural similarity, and it has been suggested as a good scaffold for protein engineering. The Vigna radiate defensin 1 (VrD1), a plant defensin, serves here as a model protein to probe the amino acid tolerance of CSab motif. A systematic alanine substitution is performed on the VrD1. The key residues governing the inhibitory function and structure stability are monitored. Thirty-two out of forty-six residue positions of VrD1 are altered by site-directed mutagenesis techniques. The circular dichroism spectrum, intrinsic fluorescence spectrum and chemical denaturation are used to analyze the conformation and structural stability of proteins. The secondary structures were highly tolerant to the amino acid substitutions; however the protein stabilities were varied for each mutant. Many mutants, although they maintained their conformations, altered their inhibitory function significantly. In this study, we reported the first alanine scan on the plant defensin containing the CSab motif. The information is valuable to the scaffold with the CSab motif and protein engineering.


    蛋白質鷹架為一對氨基酸置換具有高耐受度的胜肽骨架,本研究針對具有cysteine-stabilized □□ motif(CS□□ motif)之蛋白質鷹架進行系統性的耐受度研究。具有此一結構的蛋白質族群,其氨基酸序列相似度低,但可摺疊成相似度極高的立體構造,一般認為適合應用於蛋白質工程改質研究。綠豆第一型防禦素為一具有CSab motif的蛋白質,本研究中應用此一蛋白質做為模型,探討CSab motif對於氨基酸置換之耐受性,利用系統性丙氨酸置換方法,搜索對CS□□ motif之結構穩定性及生化功能具有決定性影響的氨基酸位置。本研究以核苷酸聚合酶鏈鎖反應方法對模型蛋進行點突變,對各突變蛋白進行旋光光譜、內生性螢光光譜及化學變性之測量,以酵素抑制能力作為生化指標。結果顯示,雖然部份突變完全失去酵素抑制能力,但所有突變蛋白質的結構穩定性並未有顯著變化。本研究為第一個對CSab motif進行完整的丙氨酸置換研究,所得之結果對CSab motif之蛋白質工程研究具有高度的應用參考價值。

    中文摘要 壹 ABSTRACT 貳 鮮奶油咖啡-代序 參 誌謝辭 肆 CONTENTS OF ATTACHED TABLES AND FIGURES III CONTENTS OF APPENDIX V CHAPTER 1: INTRODUCTION 1 1.1 PROTEIN SCAFFOLD AND SYSTEMATIC ALANINE SUBSTITUTION 1 1.2 CYSTEINE-STABILIZED alpha beta MOTIF 2 1.3 PROTEIN ENGINEERING BASED ON CSab MOTIF 4 1.4 PATENTS AND DEVELOPMENT TREND OF PROTEIN CONTAINING CSab MOTIF 5 1.5 PLANT DEFENSIN AND VIGNA RADIATE DEFENSIN 1 8 1.6 THE alpha-AMYLASE 10 1.7 INTRINSIC TRYPTOPHAN FLUORESCENCE OF PROTEIN 11 1.8 CRITERIA FOR A PROMISING PROTEIN SCAFFOLD 13 1.9 THE THEME OF THIS STUDY 15 CHAPTER 2: EXPERIMENTAL PROCEDURES 16 2.1 PLASMID CONSTRUCTION, PCR AND SITE-DIRECTED MUTAGENESIS 16 2.2 RECOMBINANT DEFENSIN EXPRESSION, PURIFICATION, IDENTIFICATION, PURITY AND PROTEIN ASSAY 16 2.3 PURIFICATION AND ACTIVITY TEST OF TENEBRIO MOLITOR alpha-AMYLASE 18 2.4 TENEBRIO MOLITOR alpha-AMYLASE ACTIVITY AND INHIBITION ASSAY 19 2.5 CIRCULAR DICHROISM, FLUORESCENCE SPECTROSCOPY AND CHEMICAL DENATURATION EXPERIMENTS 21 2.6 CHEMICAL SHIFTING AND NMR EXPERIMENTS 23 2.7 MOLECULAR DOCKING AND MULTIPLE SEQUENCE ALIGNMENT 24 CHAPTER 3: RESULTS AND DISCUSSION 25 3.1 MULTIPLE SEQUENCE ALIGNMENT OF PLANT DEFENSIN 25 3.2 EXPRESSION AND PURIFICATION OF RECOMBINANT VIGNA RADIATE DEFENSIN 1 25 3.3 PURIFICATION OF TENEBRIO MOLITOR alpha-AMYLASE 27 3.4 SECONDARY STRUCTURE TOLERANCE 28 3.5 INTRINSIC FLUORESCNEC AND CHEMICAL DENATURATION 29 3.6 CHEMICAL SHIFTING OF MUTATED PROTEINS 31 3.7 ENZYME INHIBITORY FUNCTION 32 CHAPTER 4: CONCLUSION 37 RESEARCH PUBLICATIONS 38

    1 Hey, T., Fiedler, E., Rudolph, R. and Fiedler, M. (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends in Biotechnology 23, 514-522
    2 Pessi, A., Bianchi, E., Crameri, A., Venturini, S., Tramontano, A. and Sollazzo, M. (1993) A designed metal-binding protein with a novel fold. Nature 362, 367-369
    3 Skerra, A. (2007) Alternative non-antibody scaffolds for molecular recognition. Current Opinion in Biotechnology 18, 295-304
    4 Nikkhah, M., Jawad-Alami, Z., Demydchuk, M., Ribbons, D. and Paoli, M. (2006) Engineering of b-propeller protein scaffolds by multiple gene duplication and fusion of an idealized WD repeat. Biomolecular Engineering 23, 185-194
    5 Chen, Z. and Zhao, H. (2005) Rapid Creation of a Novel Protein Function by in Vitro Coevolution. Journal of Molecular Biology 348, 1273-1282
    6 Morrison, K. L. and Weiss, G. A. (2001) Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 5, 302-307
    7 Lee, K.-H. (2002) Development of Short Antimicrobial Peptides Derived from Host Defense Peptides or by Combinatorial Libraries. Curr. Pharm. Design 8, 795-813
    8 Corzo, G., Sabo, J. K., Bosmans, F., Billen, B., Villegas, E., Tytgat, J. and Norton, R. S. (2007) Solution Structure and Alanine Scan of a Spider Toxin That Affects the Activation of Mammalian Voltage-gated Sodium Channels. J. Biol. Chem. 282, 4643-4652
    9 Assadi-Porter, F. M., Aceti, D. J. and Markley, J. L. (2000) Sweetness Determinant Sites of Brazzein, a Small, Heat-Stable, Sweet-Tasting Protein. Archives of Biochemistry and Biophysics 376, 259-265
    10 Fant, F., Vranken, W. F. and Borremans, F. A. M. (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. Proteins: Structure, Function, and Genetics 37, 388-403
    11 Sun, Y. M., Liu, W., Zhu, R. H., Wang, D. C., Goudet, C. and Tytgat, J. (2002) Roles of disulfide bridges in scorpion toxin BmK M1 analyzed by mutagenesis. Journal of Peptide Research 60, 247-256
    12 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395
    13 Zhu, S., Gao, B. and Tytgat, J. (2005) Phylogenetic distribution, functional epitopes and evolution of the CSab superfamily. Cellular and Molecular Life Sciences (CMLS) 62, 2257-2269
    14 Zhu, Q., Liang, S., Martin, L., Gasparini, S., Menez, A. and Vita, C. (2002) Role of Disulfide Bonds in Folding and Activity of Leiurotoxin I: Just Two Disulfides Suffice. Biochemistry 41, 11488-11494
    15 Stec., B. (2006) Plant thionins-the structural perspective. Cellular and Molecular Life Sciences (CMLS) V63, 1370-1385
    16 Chen, G.-H., Hsu, M.-P., Tan, C.-H., Sung, H.-Y., Kuo, C. G., Fan, M.-J., Chen, H.-M., Chen, S. and Chen, C.-S. (2005) Cloning and Characterization of a Plant Defensin VaD1 from Azuki Bean. J. Agric. Food Chem. 53, 982-988
    17 Clauss, M. J. and Mitchell-Olds, T. (2004) Functional Divergence in Tandemly Duplicated Arabidopsis thaliana Trypsin Inhibitor Genes. Genetics 166, 1419-1436
    18 Wong, J. H. and Ng, T. B. (2005) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26, 1120-1126
    19 Spelbrink, R. G., Dilmac, N., Allen, A., Smith, T. J., Shah, D. M. and Hockerman, G. H. (2004) Differential Antifungal and Calcium Channel-Blocking Activity among Structurally Related Plant Defensins. Plant Physiol. 135, 2055-2067
    20 Song, X., Wang, J., Wu, F., Li, X., Teng, M. and Gong, W. (2005) cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Plant Molecular Biology 57, 13-20
    21 Lobo, D. S., Pereira, I. B., Fragel-Madeira, L., Medeiros, L. N., Cabral, L. M., Faria, J., Bellio, M., Campos, R. C., Linden, R. and Kurtenbach, E. (2007) Antifungal Pisum sativum Defensin 1 Interacts with Neurospora crassa Cyclin F Related to the Cell Cycle. Biochemistry 46, 987-996
    22 Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. 415, 389-395
    23 Wijaya, R., Neumann, G. M., Condron, R., Hughes, A. B. and Polya, G. M. (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Science 159, 243-255
    24 Lay, F. T. and Anderson, M. A. (2005) Defensins - Components of the Innate Immune System in Plants. Current Protein & Peptide Science 6, 85-101
    25 Zhao, Q., Chae, Y. K. and Markley, J. L. (2002) NMR Solution Structure of ATTp, an Arabidopsis thaliana Trypsin Inhibitor. Biochemistry 41, 12284-12296
    26 Lin, K. F., Lee, T. R., Tsai, P. H., Hsu, M. P., Chen, C. S. and Lyu, P. C. (2007) Structure-based protein engineering for a-amylase inhibitory activity of plant defensin. Proteins: Structure, Function, and Bioinformatics 68, 530-540
    27 Melo, F. R., Rigden, D. J., Franco, O. L., Mello, L. V., Ary, M. B., Grossi de Sa, M. F. and Bloch, C. J. (2002) Inhibition of trypsin by cowpea thionin: Characterization, molecular modeling, and docking. Proteins: Structure, Function, and Genetics 48, 311-319
    28 Craik, D. J., Daly, N. L. and Waine, C. (2001) The cystine knot motif in toxins and implications for drug design. Toxicon 39, 43-60
    29 Vita, C., Roumestand, C., Toma, F. and Menez, A. (1995) Scorpion toxins as natural scaffolds for protein engineering. Proceedings of the National Academy of Sciences of the United States of America 92, 6404-6408
    30 Vita, C., Drakopoulou, E., Vizzavona, J., Rochette, S., Martin, L., Menez, A., Roumestand, C., Yang, Y.-S., Ylisastigui, L., Benjouad, A. and Gluckman, J. C. (1999) Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America 96, 13091-13096
    31 Yang, Y.-F. and Lyu, P.-C. (2008) The Proteins of Plant Defensin Family and their Application Beyond Plant Disease Control Recent Patents on DNA & Gene Sequences 2, 214-218
    32 Zhao, A., Xue, Y., Zhang, J., Gao, B., Feng, J., Mao, C., Zheng, L., Liu, N., Wang, F. and Wang, H. (2004) A conformation-constrained peptide library based on insect defensin A. Peptides 25, 629-635
    33 Vila-Perello, M., Tognon, S., Sanchez-Vallet, A., Garcia-Olmedo, F., Molina, A. and Andreu, D. (2006) A Minimalist Design Approach to Antimicrobial Agents Based on a Thionin Template. J. Med. Chem. 49, 448-451
    34 Van Gaal, L., Mertens, I., Ballaux, D. and Verkade, H. J. (2004) Modern, new pharmacotherapy for obesity. A gastrointestinal approach. Best Practice & Research Clinical Gastroenterology 18, 1049-1072
    35 Thevissen, K., Kristensen, H.-H., Thomma, B. P. H. J., Cammue, B. P. A. and Francois, I. E. J. A. (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discovery Today 12, 966-971
    36 Thomma, B. P. H. J., Cammue, B. P. A. and Thevissen, K. (2003) Mode of Action of Plant Defensins Suggests Therapeutic Potential. Current Drug Targets - Infectious Disorders 3, 1
    37 Zhu, S. (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSab defensins. Molecular Immunology 45, 828-838
    38 Gupta, G. (2005) United States 20050257285
    39 Chen, C.-S., Chen, K.-C., Kuan, C.-C. and Lin, C.-Y. (2006) United States 7091312
    40 Burian, J. and Bartfeld, D. (2005) United States 6946261
    41 Hoegenhaug, H.-H. K., Schnorr, K. M. and Hansen, M. T. (2006) United States 20060211089
    42 Thomma, B. P. H. J., Terras, F. R. G., Penninckx, I. A. M. A., Manners, J. M., Kazan, K. and Broekaert, W. F. (2002) United States 20020035738
    43 Chen, C.-S., Chen, G.-H. and Lo, L.-W. (2008) United States 7314972
    44 Smythe, M. L., Dooley, M. J. and Andrews, P. R. (2006) United States 7092825
    45 Liu, Y.-F., Hu, J., Zhang, J.-H., Wang, S.-L. and Wu, C.-F. (2002) Isolation, purification, and N-terminal partial sequence of an antitumor peptide from the venom of the Chinese scorpion Buthus martensii Karsch. Prep. Biochem. Biotechnol. 32, 317-327
    46 Zhang, J., Ma, R., Wang, S., Liu, Y. and Wu, C. (2006) United States 20060252676
    47 Stemmer, W., Schellenberger, V., Bader, M. and Scholle, M. (2007) United States 20070212703
    48 Landon, C., Vovelle, F., Sodano, P. and Pajon, A. (2000) The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. Journal of Peptide Research 56, 231-238
    49 Montesinos, E. (2007) Antimicrobial peptides and plant disease control. FEMS Microbiology Letters 270, 1-11
    50 Garcia-Olmedo, F., Molina, A., Alamillo, J. M. and Rodriguez-Palenzuela, P. (1998) Plant defense peptides. Peptide Science 47, 479-491
    51 Lamberty, M., Caille, A., Landon, C., Tassin-Moindrot, S., Hetru, C., Bulet, P. and Vovelle, F. (2001) Solution Structures of the Antifungal Heliomicin and a Selected Variant with both Antibacterial and Antifungal Activities. Biochemistry 40, 11995-12003
    52 Lay, F. T., Schirra, H. J., Scanlon, M. J., Anderson, M. A. and Craik, D. J. (2003) The Three-dimensional Solution Structure of NaD1, a New Floral Defensin from Nicotiana alata and its Application to a Homology Model of the Crop Defense Protein alfAFP. J. Mol. Biol. 325, 175-188
    53 Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S. and Lyu, P. C. (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins: Structure, Function, and Bioinformatics 63, 777-786
    54 Boman, H. G. (2003) Antibacterial peptides: basic facts and emerging concepts. Journal of Internal Medicine 254, 197-215
    55 Chen, J. J., Chen, G. H., Hsu, H. C., Li, S. S. and Chen, C. S. (2004) Cloning and Functional Expression of a Mungbean Defensin VrD1 in Pichia pastoris. J. Agric. Food Chem. 52, 2256-2261
    56 Abe, J., Sidenius, U. and Svensson, B. (1993) Arginine is essential for the alpha-amylase inhibitory activity of the a-amylase/subtilisin inhibitor (BASI) from barley seeds. Biochem. J. 293, 151-155
    57 Franco, O. L., Rigden, D. J., Melo, F. R. and Grossi-de-Sa, M. F. (2002) Plant a-amylase inhibitors and their interaction with insect a-amylases: Structure, function and potential for crop protection. Eur. J. Biochem. 269, 397-412
    58 Dias, S. C., Franco, O. L., Magalhaes, C. P., Oliveira-Neto, O. B., Laumann, R. A., Figueira, E. L., Melo, F. R. and Grossi-De-Sa, M. F. (2005) Molecular Cloning and Expression of an a-Amylase Inhibitor from Rye with Potential for Controlling Insect Pests. The Protein Journal 24, 113-123
    59 Maskos, K., Huber-Wunderlich, M. and Glockshuber, R. (1996) RBI, a one-domain a-amylase/trypsin inhibitor with completely independent binding sites. FEBS Letters 397, 11-16
    60 Payan, F. (2004) Structural basis for the inhibition of mammalian and insect a-amylases by plant protein inhibitors. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 1696, 171-180
    61 Strobl, S., Gomis-R□h, F.-X., Maskos, K., Frank, G., Huber, R. and Glockshuber, R. (1997) The a-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Letters 409, 109-114
    62 Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. and Glockshuber, R. (1998) Crystal structure of yellow meal worm alpha-amylase at 1.64 A resolution. J Mol Biol. 278, 617-628
    63 Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E. and Payan, F. (1999) A plant-seed inhibitor of two classes of a-amylases: X-ray analysis of Tenebrio molitor larvae a-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallographica Section D 55, 360-362
    64 Pereira, P. J. B., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S. and Strobl, S. (1999) Specific inhibition of insect a-amylases: yellow meal worm a-amylase in complex with the Amaranth a-amylase inhibitor at 2.0 Å resolution. Structure 7, 1079-1088
    65 Chen, Y. and Barkley, M. D. (1998) Toward Understanding Tryptophan Fluorescence in Proteins. Biochemistry 37, 9976-9982
    66 Alston, R. W., Urbanikova, L., Sevcik, J., Lasagna, M., Reinhart, G. D., Scholtz, J. M. and Pace, C. N. (2004) Contribution of Single Tryptophan Residues to the Fluorescence and Stability of Ribonuclease Sa. Biophys. J. 87, 4036-4047
    67 Lakshmikanth, G. S. and Krishnamoorthy, G. (1999) Solvent-Exposed Tryptophans Probe the Dynamics at Protein Surfaces. Biophys. J. 77, 1100-1106
    68 Vivian, J. T. and Callis, P. R. (2001) Mechanisms of Tryptophan Fluorescence Shifts in Proteins. Biophys. J. 80, 2093-2109
    69 Ervin, J., Larios, E., Osvath, S., Schulten, K. and Gruebele, M. (2002) What Causes Hyperfluorescence: Folding Intermediates or Conformationally Flexible Native States? Biophys. J. 83, 473-483
    70 Malavasic, M., Poklar, N., Macek, P. and Vesnaver, G. (1996) Fluorescence studies of the effect of pH, guanidine hydrochloride and urea on equinatoxin II conformation. Biochimica et Biophysica Acta (BBA) - Biomembranes 1280, 65-72
    71 Bennion, B. J. and Daggett, V. (2003) The molecular basis for the chemical denaturation of proteins by urea. Proceedings of the National Academy of Sciences of the United States of America 100, 5142-5147
    72 Pace, C. N., Treviño, S., Prabhakaran, E. and Scholtz, J. M. (2004) Protein structure, stability and solubility in water and other solvents. Philosophical Transactions of the Royal Society B: Biological Sciences 359, 1225-1235
    73 Tsybovsky, Y., Shubenok, D. V., Kravchuk, Z. I. and Martsev, S. P. (2007) Folding of an antibody variable domain in two functional conformations in vitro: calorimetric and spectroscopic study of the anti-ferritin antibody VL domain. Protein Engineering, Design and Selection, gzm034
    74 Carvalho, A. d. O. and Gomes, V. M. (2009) Plant defensins--Prospects for the biological functions and biotechnological properties. Peptides 30, 1007-1020
    75 Castro, M. S. and Fontes, W. (2005) Plant Defense and Antimicrobial Peptides. Protein & Peptide Letters 12, 11-16
    76 Cohen, L., Karbat, I., Gilles, N., Ilan, N., Benveniste, M., Gordon, D. and Gurevitz, M. (2005) Common Features in the Functional Surface of Scorpion {beta}-Toxins and Elements That Confer Specificity for Insect and Mammalian Voltage-gated Sodium Channels. J. Biol. Chem. 280, 5045-5053
    77 Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710-720
    78 Vance, J. E., LeBlanc, D. A. and London, R. E. (1997) Cleavage of the X-Pro Peptide Bond by Pepsin Is Specific for the trans Isomer. Biochemistry 36, 13232-13240
    79 Wang, Y., Jing, L. and Xu, K. (2002) A unique approach for high level expression and production of a recombinant cobra neurotoxin in Escherichia coli. Journal of Biotechnology 94, 235-244
    80 Marley, J., Lu, M. and Bracken, C. (2001) A method for efficient isotopic labeling of recombinant proteins. Journal of Biomolecular NMR 20, 71-75
    81 Findlay, J. and Dillard, R. (2007) Appropriate Calibration Curve Fitting in Ligand Binding Assays. The AAPS Journal 9, E260-267
    82 Smolec, J., DeSilva, B., Smith, W., Weiner, R., Kelly, M., Lee, B., Khan, M., Tacey, R., Hill, H., Celniker, A., Shah, V., Bowsher, R., Mire-Sluis, A., Findlay, J. W. A., Saltarelli, M., Quarmby, V., Lansky, D., Dillard, R., Ullmann, M., Keller, S. and Karnes, H. T. (2005) Bioanalytical Method Validation for Macromolecules in Support of Pharmacokinetic Studies. Pharmaceutical Research 22, 1425-1431
    83 DeSilva, B., Smith, W., Weiner, R., Kelley, M., Smolec, J., Lee, B., Khan, M., Tacey, R., Hill, H. and Celniker, A. (2003) Recommendations for the Bioanalytical Method Validation of Ligand-Binding Assays to Support Pharmacokinetic Assessments of Macromolecules. Pharmaceutical Research 20, 1885-1900
    84 Gottschalk, P. G. and Dunn, J. R. (2005) The five-parameter logistic: A characterization and comparison with the four-parameter logistic. Analytical Biochemistry 343, 54-65
    85 Cheng, C.-S., Chen, M.-N., Lai, Y.-T., Chen, T., Lin, K.-F., Liu, Y.-J. and Lyu, P.-C. (2008) Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins: Structure, Function, and Bioinformatics 70, 695-706
    86 Samuel, D., Liu, Y.-J., Cheng, C.-S. and Lyu, P.-C. (2002) Solution Structure of Plant Nonspecific Lipid Transfer Protein-2 from Rice (Oryza sativa). J. Biol. Chem. 277, 35267-35273
    87 Liu, Y.-J., Samuel, D., Lin, C.-H. and Lyu, P.-C. (2002) Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa). Biochemical and Biophysical Research Communications 294, 535-540
    88 Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 85, 393-399
    89 Goddard, T. D. and Kneller, D. G. (1999) SPARKY 3. University of California, San Francisco
    90 Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. and Wolfson, H. J. (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl. Acids Res. 33, W363-367
    91 Wallace, A. C., Laskowski, R. A. and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127-134
    92 Lu, G. and Moriyama, E. N. (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5, 378-388
    93 Cunningham, B. and Wells, J. (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis Science 244, 1081-1085
    94 Pakula, A. A., Young, V. B. and Sauer, R. T. (1986) Bacteriophage lambda cro mutations: effects on activity and intracellular degradation. Proceedings of the National Academy of Sciences of the United States of America 83, 8829-8833
    95 Adams, P. D., Chen, Y., Ma, K., Zagorski, M. G., Sonnichsen, F. D., McLaughlin, M. L. and Barkley, M. D. (2002) Intramolecular Quenching of Tryptophan Fluorescence by the Peptide Bond in Cyclic Hexapeptides. J. Am. Chem. Soc. 124, 9278-9286
    96 Alston, R., Lasagna, M., Grimsley, G., Scholtz, J., Reinhart, G. and Pace, C. (2008) Peptide Sequence and Conformation Strongly Influence Tryptophan Fluorescence. Biophys. J. 94, 2280-2287
    97 Turkov, M., Rashi, S., Noam, Z., Gordon, D., Khalifa, R. B., Stankiewicz, M., Pelhate, M. and Gurevitz, M. (1997) In VitroFolding and Functional Analysis of an Anti-insect Selective Scorpion Depressant Neurotoxin Produced inEscherichia coli. Protein Expression and Purification 10, 123-131
    98 Yuan, Y., Gao, B. and Zhu, S. (2007) Functional expression of a Drosophila antifungal peptide in Escherichia coli. Protein Expression and Purification 52, 457-462
    99 De-Paula, V., Razzera, G., Medeiros, L., Miyamoto, C., Almeida, M., Kurtenbach, E., Almeida, F. and Valente, A. (2008) Evolutionary relationship between defensins in the Poaceae family strengthened by the characterization of new sugarcane defensins. Plant Molecular Biology 68, 321-335
    100 Lee, D. G., Shin, S. Y., Kim, D.-H., Seo, M. Y., Kang, J. H., Lee, Y., Kim, K. L. and Hahm, K.-S. (1999) Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans. Biotechnology Letters 21, 1047-1050
    101 Gueguen, Y., Herpin, A., Aumelas, A., Garnier, J., Fievet, J., Escoubas, J.-M., Bulet, P., Gonzalez, M., Lelong, C., Favrel, P. and Bachere, E. (2006) Characterization of a Defensin from the Oyster Crassostrea gigas: Recombinant production, folding, solution structure, antimicrobial activities , and gene expression. J. Biol. Chem. 281, 313-323
    102 Cheng, K. C. (2007) Site-Directed Mutagenesis Studies of Potential Structural Element of Vigna radiata Plant Defensin 1 Involved in Inhibiting Insect a-Amylase National Tsing Hua University Master Thesis
    103 Tsai, P. H. (2006) Identification of critical amino-acid residues in Vigna radiata plant defensin 1 involved in inhibiting Tenebrio molitor a-amylase National Tsing-Hua University Master Thesis

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE