簡易檢索 / 詳目顯示

研究生: 林彥宇
Lin, Yen Yu
論文名稱: 基於容器技術、⽀援即需即⽤服務建置的⾃動化⼯作流程系統
Container-Based Automated Workflow System Supporting On-Demand Service Provision
指導教授: 鍾葉青
Chung, Yeh Ching
口試委員: 周嘉政
李哲榮
許慶賢
蕭宏章
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 41
中文關鍵詞: 流程系統容器⾃動化即需即⽤服務建置
外文關鍵詞: Workflow System, Container, Automation, On-Demand, Provision
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雲端計算⽇漸普及,雲端計算強⼤的運算與儲存能⼒讓許多⼈受惠,但並⾮所有⼈都能夠駕馭雲端計算的資源。現今許多框架與服務提供了使⽤者發展各種應⽤的可能性,並且試圖降低雲端的⾨檻。在這篇論⽂中,我們將設計⼀套整合雲端資源的⾃動化流程系統。我們的系統使⽤了更輕量化的容器技術與容器管理⼯具,以達到可擴充性、⾃動化、快速建置並提供彈性的流程定義語⾔,幫助使⽤者處理多樣化的應⽤與繁複的⼯作流程。


    Cloud computing is very common and popular nowadays. It provides powerful
    computation and storage resources that benefit many users. However, developers
    cannot master cloud computing easily. Therefore, there are many frameworks or
    services for developers to build their applications quickly. In this thesis, we propose an automated workflow system, which can integrate cloud resources seamlessly. With
    lightweight container technology and container management tool, our system is extensible, automated and is capable of provisioning runtime environment quickly.
    We also design a flexible job description language to help developers to define their workflows. Developers can deal with diverse applications and complicated workflows
    with our system fluently.

    CHAPTER 1 Introduction.......................................................................................6 CHAPTER 2 Related Work.....................................................................................9 CHAPTER 3 Container .........................................................................................11 3.1 Docker............................................................................................................12 3.1.1 Layered File System and Image Registry ...........................................12 3.1.2 Performance ........................................................................................13 3.2 Kubernetes .....................................................................................................14 CHAPTER 4 System Design..................................................................................16 4.1 Overview........................................................................................................16 4.2 System Architecture.......................................................................................18 4.2.1 Job Description File ............................................................................19 4.2.2 Command-line Client..........................................................................21 4.2.3 External Storage..................................................................................22 4.2.4 Image Registry ....................................................................................23 4.2.5 Workflow Engine................................................................................24 4.2.6 Job Queue System...............................................................................25 4.2.7 Messaging System ..............................................................................26 CHAPTER 5 Evaluation ........................................................................................28 5.1 Implementation ..............................................................................................28 5.2 Comparison with Amazon Elastic MapReduce .............................................37 CHAPTER 6 Conclusions and Future Work.......................................................39 REFERENCE.............................................................................................................40

    1. Lohr, S., The age of big data. New York Times, 2012. 11.
    2. Google. Kubernetes. 2015 [cited 2015; Available from: http://kubernetes.io/.
    3. Hsiao, M.-C., The Study of a Linux Container-Based Cloud Operating System
    for Platform as a Service. 2014, July.
    4. Crockford, D., The application/json media type for javascript object notation
    (json). 2006.
    5. Heinis, T., C. Pautasso, and G. Alonso. Design and evaluation of an
    autonomic workflow engine. in Autonomic Computing, 2005. ICAC 2005.
    Proceedings. Second International Conference on. 2005. IEEE.
    6. Koding, I. Koding. [cited 2015; Available from: https://koding.com/.
    7. LLC, C. CoderPad. [cited 2015; Available from: https://coderpad.io/.
    8. Cai, J.-s., The Design of a Linux Container-based Platform for Program
    Trading. 2014.
    9. Taylor, R.C., An overview of the Hadoop/MapReduce/HBase framework and
    its current applications in bioinformatics. BMC bioinformatics, 2010.
    11(Suppl 12): p. S1.
    10. Zaharia, M., et al. Spark: cluster computing with working sets. in Proceedings
    of the 2nd USENIX conference on Hot topics in cloud computing. 2010.
    11. Amazon. Amazon Elastic MapReduce. [cited 2015; Available from:
    http://aws.amazon.com/elasticmapreduce/?nc2=h_ls.
    12. BonitaSoft. BonitaBPM. Available from: http://www.bonitasoft.com/.
    13. White, S.A., Introduction to BPMN. IBM Cooperation, 2004. 2(0): p. 0.
    14. Pandey, S., D. Karunamoorthy, and R. Buyya, Workflow engine for clouds.
    Cloud Computing: Principles and Paradigms, 2011: p. 321-344.
    15. Kamp, P.-H. and R.N. Watson. Jails: Confining the omnipotent root. in
    Proceedings of the 2nd International SANE Conference. 2000.
    16. Helsley, M., LXC: Linux container tools. IBM devloperWorks Technical
    Library, 2009.
    17. Xavier, M.G., et al. Performance evaluation of container-based virtualization
    for high performance computing environments. in Parallel, Distributed and
    Network-Based Processing (PDP), 2013 21st Euromicro International
    Conference on. 2013. IEEE.
    18. Docker, I. Docker. Available from: https://www.docker.com/.
    19. Rathore, M.S., M. Hidell, and P. Sjödin, KVM vs. LXC: comparing
    41
    performance and isolation of hardware-assisted virtual routers. American
    Journal of Networks and Communications, 2013. 2(4): p. 88-96.
    20. Bernstein, D., Containers and cloud: From lxc to docker to kubernetes. IEEE
    Cloud Computing, 2014(3): p. 81-84.
    21. Richardson, A., Introduction to RabbitMQ. Google UK, Sep, 2008. 25.
    22. Jones, B., et al., RabbitMQ Performance and Scalability Analysis. project on
    CS. 4284.
    23. Dean, J. and S. Ghemawat, MapReduce: a flexible data processing tool.
    Communications of the ACM, 2010. 53(1): p. 72-77.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE