簡易檢索 / 詳目顯示

研究生: 黃亭諭
Huang, Ting-Yu
論文名稱: 雙頻激發訊號於超音波分子生物影像
Dual-Frequency Excitation in Ultrasound Molecular Imaging
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 王士豪
Wang, Shyh-Hau
李夢麟
Li, Meng-Lin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 雙頻激發訊號微氣泡共振頻率聲學輻射力雙頻啾聲調頻反向
外文關鍵詞: Dual-frequency excitation, Microbubbles, Resonance frequency, Radiation force, Dual-frequency chirp reversal
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的十年中,超音波分子生物影像在癌症相關領域的研究中被視為十分有潛力的一門技術,然而其造影技術仍有許多發展限制及尚待改進的空間。微氣泡標的性吸附於病灶區的效率低將降低影像對比解析度,另外傳統超音波分子影像演算法係以等待一段時間使自由氣泡自然代謝的方式來對標的性吸附的微氣泡進行成像,影像無法即時取得且容易受到移動的干擾而產生極大誤差。雖然目前已有相關研究提出以聲學輻射力來增加微氣泡吸附效率進而降低造影所需等待的時間,然而此技術的工作頻率較低導致前很難應用於高頻影像系統。
    為了解決上述問題,本論文利用雙頻頻差激發技術以低頻的封包來提供聲學輻射力增加微氣泡吸附效率。本研究使用共振頻率為9–35 MHz的自製標的性吸附微氣泡進行實驗。結果顯示,當雙頻激發訊號封包頻率為靠近微氣泡共振頻率的10–30 MHz時,能使吸附效率在兩分鐘內增加達3.3–6.2倍。此外,由於高頻載波提供較小的空間取樣體積, 本技術可讓微氣泡做更局部的吸附,未來應用可進行局部治療,降低傷害其他正常組織之機會。
    本論文的另一主軸,則是將雙頻激發訊號做更進一步的應用,配合啾聲調頻反向的技術,提出以雙頻啾聲調頻反向訊號做為一新式超音波分子生物影像造影訊號。此技術可以在一次的逆散射訊號中,將自由氣泡的訊號分離,保留下標的氣泡進行造影,因此可有效地縮短目前超音波分子生物影像造影技術的成像時間,進而達到即時的超音波分子生物影像造影。由於此訊號對於組織諧波訊號的高抑制能力以及可進行脈衝壓縮的特性,利用此技術所取得的標的影像對比解析度可達24.8 dB。


    In the past decade, ultrasound molecular imaging has become a promising tool for cancer research, but there remain several challenges for its use in vivo. Low adhesion efficiency of microbubbles at the target sites decreases the contrast resolution of ultrasound molecular images. Conventional strategy to image the adherent microbubbles is based the clearance of freely circulating microbubbles after a period of time, which limits the development of real-time ultrasound molecular imaging. Motion artifacts may therefore affect the quality of acquired images. Thus, ultrasound radiation force (USRF) was recently proposed to increase the adhesion efficiency of targeted microbubbles and reduce the imaging time duration. Since ultrasound frequency close to lower resonance frequency of microbubbles can provide available USRF to drive microbubbles, USRF on commercialized microbubbles becomes a potential challenge on high-frequency ultrasound.
    In this study, we proposed a dual-frequency (DF) excitation with a high-frequency carrier and various low-frequency envelope components to optimize the targeting efficiency of microbubbles. Results show that DF excitation with envelope frequencies (i.e., 10–30 MHz) close to the resonance frequency of submicron in-house bubbles (i.e., 9–35 MHz) resulted in targeting enhancement of 3.3–6.2 folds at the duration of 2 minutes. In addition, the high-frequency carrier of DF excitation provides a more localized microbubbles adhesion area, showing great promise to reduce the biological effect of ultrasound targeted therapy.
    In the second part, we combined DF excitation with chirp reversal technique (referred to DF-chirp reversal) to selectively image the adherent microbubbles. Since DF chirp excitation can be compressed by matched filtering to suppress tissue components, the contrast-to-tissue ratio can be up to 24.8 dB in-vitro phantom experiments. Therefore, the DF-chirp reversal method has the potential to be implemented in a real-time ultrasound molecular imaging system.

    第一章 緒論 1.1. 分子生物影像 (Molecular Imaging) 1.1.1. 超音波對比劑 1.1.2. 超音波分子生物影像 (Ultrasound Molecular Imaging) 1.1.3. 標的性超音波對比劑表面修飾技術 1.1.4. 超音波分子生物影像的臨床應用 1.2. 超音波分子生物影像的限制 1.2.1. 低量的對比劑吸附 1.2.2. 循環微氣泡產生的高背景值 1.2.3. 受限制的視野(Field of View, FOV) 1.2.4. 定量分析的困境 1.2.5. 可能引起的免疫反應 1.3. 超音波分子生物影像的改進技術 1.3.1. 微氣泡的修飾改良與篩選 1.3.2. 聲學輻射力於微氣泡吸附效率的提升 1.3.3. 成像與偵測技術的改進 1.3.4. 現行改進技術的綜合分析探討 1.4. 雙頻激發超音波於超音波分子生物影像 1.4.1. 微氣泡吸附效率提升 1.4.2. 雙頻啾聲調頻反向 (Dual-Frequency Chirp Reversal method) 1.5. 本研究目的及論文架構 第二章 超音波對比劑製備與體外標的性仿體架構 2.1. 概論 2.2. 超音波對比劑製備 2.3. 超音波對比劑物理參數探討 2.3.1. 粒徑分布量測(Size Distribution) 2.3.2. 共振頻率模擬與量測(Resonance Frequency Estimation) 2.4. 體外標的性仿體架構(In Vitro Targeting Model) 第三章 雙頻激發訊號於提升標的性超音波對比劑吸附效率之研究 3.1. 雙頻激發訊號理論基礎 3.1.1. 雙頻激發訊號之聲學輻射力 3.2. 雙頻激發訊號頻率選擇與波形設計 3.3. 雙頻激發訊號提升微氣泡吸附效率實驗 3.3.1. 實驗仿體架構 3.3.2. 實驗硬體系統架構 3.3.3. 實驗方法 3.4. 實驗結果與討論 3.4.1. 微氣泡吸附效率增益結果 3.4.2. 聲學輻射力頻率與微氣泡粒徑關係探討 3.4.3 對比劑吸附區域比較(Tageting Spot Size) 第四章 雙頻啾聲調頻反向技術於標的性超音波對比劑之定量研究 4.1. 雙頻啾聲訊號原理 4.1.1. 雙頻啾聲調頻反向技術 4.2. 實驗架構 4.2.1. 環型探頭與標的性微氣泡 4.2.2. 雙頻啾聲調頻反向訊號設計 4.2.3. 實驗系統架構 4.3. 實驗方法 4.4. 實驗結果與討論 第五章 結論與未來工作 5.1. 結論 5.2. 未來工作 參考文獻

    [1] N. C. Nanda, R. Gramiak and P. M. Shah, “Diagnosis of Aortic Root Dissection by Echocardiography,” Investigative Radiology, vol. 3, pp. 356–366, 1968.
    [2] K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng., vol. 23, no. 6, pp. 460–467, 1976.
    [3] P. J. A. Frinking, and N. de Jong, “Ultrasound Contrast Imaging: Current and New Potential Methods,” Ultrasound in Med. & Biol., vol. 26, no. 6, pp. 965-975, 2000.
    [4] K. W. Ferrara, “Driving delivery vehicles with ultrasound,” Adv. Drug. Deliv. Rev., vol. 60, pp. 1097–1102, 2008.
    [5] J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, “Ultrasound Assessment of Inflammation and Renal Tissue Injury With Microbubbles Targeted to P-Selectin,” Circulation, vol. 104, no. 17, pp. 2107–2112, 2001.
    [6] F. S. Villanueva, R. J. Jankowski, S. Klibanov, M. L. Pina, S. M. Alber, S. C. Watkins, G. H. Brandenburger and W. R. Wagner, “Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells,” Circulation, vol. 98, pp. 1–5, 1998.
    [7] F. J. J. Toublan, S. Boppart, and K. S. Suslick, “Tumor targeting by surface-modified protein microspheres,” J. Am. Chem. Soc., vol. 128, pp. 3472–3473, 2006.
    [8] E. C. Unger, T. P. McCreery, R. H. Sweitzer, D. K. Shen, and G. L. Wu, “In vitro studies of a new thrombus-specific ultrasound contrast agent,” Am. J. Cardiol., vol. 81(12A), pp. 58G–61G, 1998.
    [9] Y. Q. Wu, E. C. Unger, T. P. McCreery, R. H. Sweitzer, D. K. Shen, G. L. Wu, and Vielhauer, “Binding and lysing of blood clots using MRX-408,” Invest. Radiol., vol. 33, pp. 880–885, 1998.
    [10] N. Ferrara N, and W. J. Henzel, “Pituitary Follicular Cells Secrete A Novel Heparin-Binding Growth-Factor Specific for Vascular Endothelial-Cells,” Biochem. Biophys. Res. Commun., vol. 161(2), pp. 851–858, 1989.
    [11] P. A. Dayton, D. Pearson, J. Clark, S. Simon, P. A. Schumann, R. Zutshi, T. O. Matsunaga, and K. W. Ferrara, “Ultrasonic analysis of peptide- and antibody-targeted microbubble contrast agents for molecular imaging of αvβ3-expressing cells,” Mol. Imaging, vol. 3, no. 2, pp. 125–134, 2004.
    [12] S. Zhao, D. E. Kruse, K. W. Ferrara and P. A. Dayton, “Selective imaging of adherent targeted ultrasound contrast agents,” Phys. Med. Biol., vol. 52, pp. 2055–2072, 2007.
    [13] J. P. Christiansen, and J. R. Lindner, “Molecular and cellular imaging with targeted contrast ultrasound,” Proc. IEEE Ultrason. Symp., vol. 93, pp. 809–818, 2005.
    [14] J. R. Lindner, “Contrast ultrasound molecular imaging of inflammation in cardiovascular disease,” Cardiovasc Res., vol. 84, pp. 182–189, 2009.
    [15] J. Sijl, E. Gaud, P. J. A. Frinking, M. Arditi, N. de Jong, D. Lohse, and M. Versluis, “Acoustic characterization of singleultrasound contrast agent microbubbles,” J. Acoust. Soc. Am., vol. 124, no. 6, pp. 4091–4097, 2008.
    [16] M. Kaya, S. Feingold, J. Streeter, K. Hettiarachchi, A. P. Lee, and P. A. Dayton, “Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing,” Bubble Sci. Eng. Technol., vol. 2, no. 2, pp. 33–40,2010.
    [17] C. F. Caskey, D. E. Kruse, P. A. Dayton, Charles, T. K. Kitano, and K. W. Ferrara, “Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns,” Appl. Phys. Lett., vol. 88:033902, 2006.
    [18] B. Dollet, S. M. van der Meer, V. Garbin, N. de Jong, D. Lohse, and M. Versluis, “Nonspherical oscillations of ultrasound contrast agent microbubbles,” Ultrasound Med Biol, vol. 34, pp. 1465–1473,2008.
    [19] S. Zhao, K. W. Ferrara, and P. A. Dayton, “Asymmetric oscillation of adherent targeted ultrasound contrast agents,” Appl. Phys. Lett., vol. 87, no. 13, pp. 134103-1–134103-3, 2005.
    [20] J. S. Allen, D. E. Kruse, P. A. Dayton, and K. W. Ferrara, “Effect of coupled oscillations on microbubble behavior,” J. Acoust. Soc. Am., vol. 114, pp. 1678–1690, 2003.
    [21] G. E. R. Weller, F. S. Villanueva, E. M. Tom, and W. R. Wagner, “Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewis,” Biotechnol. Bioeng., vol. 92, pp. 780–788, 2005.
    [22] A. L. Klibanov, J. J. Rychak, W. C. Yang, S. Alikhani, B. Li, S. Acton, J. R. Lindner, K. Ley and S. Kaul, “Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow,” Contrast Med. Mol. Imaging, vol. 1, pp. 259–266, 2006.
    [23] J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Mol. Imaging, vol. 9, no. 2, pp. 87–95, 2010.
    [24] V. F. K. Bjerknes, “Fields of Force,” New York: Columbia Univ. Press, 1906.
    [25] L. V. King, “On the acoustic radiation pressure on spheres,” Proceedings of the Royal Society of Acoustics, vol. 153, pp. 212–239, 1936.
    [26] K. Yosioka and Y. Kawasima, “Acoustic radiation pressure on a compressible sphere,” Acustica, vol. 5, pp. 167–173, 1955.
    [27] W. L. Nyborg, “Radiation pressure on a small rigid sphere,” J. Acoust. Soc. Am., vol. 42, no. 5, pp. 947–952, 1967.
    [28] I. C. Macedo, and W. Yang, “Acoustic effects on gas bubbles in the flows of viscous fluids and whole blood,” J J. Acoust. Soc. Am., vol. 53, no. 5, pp. 1327–1335, 1973.
    [29] P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. Brandenburger, K. R. Nightingale, and K. W. Ferrara, “A Preliminary Evaluation of the Effects of Primary and Secondary Radiation Forces on Acoustic,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, no. 6, pp.1264–1276, 1997.
    [30] S. Zhao, M. Borden, S. H. Bloch, D. Kruse, K. W. Ferrara, and P. A. Dayton, “Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging,” Mol Imaging., vol. 3, no. 3, pp. 135–148, 2004.
    [31] S. Zhao, D. E. Kruse, K. W. Ferrara, and P. A. Dayton, “Selective imaging of adherent targeted ultrasound contrast agents,” Phys. Med. Biol., vol. 52, pp. 2055–2072, 2007.
    [32] K. Wei, A. R. Jayaweera, S. Firoozan, A. Linka, D. M. Skyba and S. Kaul, “Quantification of Myocardial Blood Flow With Ultrasound-Induced Destruction of Microbubbles Administered as a Constant Venous Infusion,” Circulation, vol. 97, pp. 473–483, 1998.
    [33] J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley and S. Kaul, “Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes,” Circulation, vol. 102, pp. 2745–2750, 2000.
    [34] J. J. Rychak, J. Graba, A. M.Y. Cheung, B. S. Mystry, J. R. Lindner, R. S. Kerbel, and F. S. Foster, “Microultrasound Molecular Imaging of Vascular Endothelial Growth Factor Receptor 2 in a Mouse Model of Tumor Angiogenesis, ” Mol. Imaging, vol. 6, no. 5, pp. 289–296, 2007.
    [35] J. K. Willmann, R. Paulmurugan, K. Chen, O. Gheysens, M. Rodriguez-Porcel, A. M. Lutz, I. Y. Chen, X. Chen, and S. S. Gambhir, “US Imaging of Tumor Angiogenesis with Microbubbles Targeted to Vascular Endothelial Growth Factor Receptor Type 2 in Mice,” Radiology, vol. 246, no. 2, pp. 508–518, 2008.
    [36] N. De Jong, “Improvements in ultrasound contrast agents,” IEEE Engineering Med. Biol., vol. 15, issue 6, pp. 72–82, 1996.
    [37] C. K. Yeh, S. Y. Su, C. C. Shen, and M. L. Li, “Dual high-frequency difference excitation for contrast detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, pp. 2164–2176, 2008.
    [38] Y. Sun, D. E. Kruse, and K. W. Ferrara, “Contrast imaging with chirped excitation,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 54, pp. 520–529, 2007.
    [39] Y. Sun, S. Zhao, P. A. Dayton, and K. W. Ferrara, “Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 53, pp. 1130–1137, 2006.
    [40] A. Prosperetti, “The equation of bubble dynamics in a compressible liquid,” Phys. Fluid, Vol. 30, no. 11, pp. 3626–3628, 1987.
    [41] C. A. MacDonald and V. Sboros, “A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude,” Ultrasonics, vol. 43, pp. 113–122, 2004.
    [42] K. E. Morgan, and K. W. Ferrara, “Experimental and Theoretical Evaluation of Microbubble Behavior: Effect of Transmitted Phase and Bubble Size,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 6, pp. 1494–1509, 2000.
    [43] L. A. Crum, “The Polytropic exponent of gas contained within air bubbles pulsating in a liquid,” J. Acoust. Soc. Am., vol. 73, no. 1, pp. 116–120, 1983.
    [44] O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating Perfluorohexane Particles with High Frequency Ultrasound,” Ultrasound in Med. Biol., vol. 32, no. 1, pp. 73–82, 2006.
    [45] M. Emmer, H. J. Vos, D. E. Goertz, A. van Wamel, M. Versluis, and N. de Jong, “Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures,” Ultrasound in Med. & Biol., vol. 35, no. 1, pp. 102–111, 2009.
    [46] P. J. A. Frinking and N. de Jong, “Acoustic modeling of shell-encapsulated gas bubble,” Ultrasound Med. Biol., vol. 24, no. 4, pp. 523–533, 1998.
    [47] N. Kudo, N. Hirao, K. Okada, and K. Yamamoto, “Measurement of pressure-dependent attenuation of ultrasound contrast agents,” 2009.[In press]
    [48] O. Couture, P. D. Bevan, E. Cherin, K. Cheung, P. N. Burns, and F. S. Foster, “Investigating Perfluorohexane Particles with High-frequency Ultrasound,” Ultrasound in Med. & Biol., vol. 32, no. 1, pp. 73–82, 2006.
    [49] J. D. Gregory, “The stability of N-ethylmaleimide and its reaction with sulfhydryl groups,” J. Am. Chem. Soc., vol. 77, pp. 3922–3923, 1955.
    [50] J.E. Eastoe, “The amino acid composition of mammalian collagen and gelatin,” Biochem. J., vol. 61, pp. 589–600, 1955.
    [51] M. Fatemi, and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. USA, vol. 96, pp. 6603–6608, 1999.
    [52] S. Chen, M. Fatemi, R. Kinnick, and J. F. Greenleaf, “Comparison of Stress Field Forming Methods for Vibro-acoustography,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, no. 3, pp. 313–321, 2004.
    [53] J. H. Vos, D. E. Goertz, and N. de Jong, “Self-demodulation of high-frequency ultrasound,” J. Acoust Soc Am., vol. 127, pp. 1208–1217, 2010.
    [54] V. R. S. Patil, C. J. Campbell, Y. H. Yun, S. M. Slack, and D. J. Goetz, “Particle Diameter Influences Adhesion under Flow,” Biophys J., vol. 80, pp. 1733–1743, 2001.
    [55] S. Ottoboni, R. E. Short, M. B. Kerby, E. G. Tickner, E. Steadman and T. B. Ottoboni, “Characterization of the in vitro adherence behavior of ultrasound responsive double-shelled microspheres targeted to cellular adhesion molecules,” Contrast Med. Mol. Imaging, vol. 1, pp. 279–290, 2006.
    [56] P. A. Dayton, J. S. Allen, and K. W. Ferrara, “The magnitude of radiation force on ultrasound contrast agents,” J. Acoust. Soc. Am., vol. 112, no. 5, pp. 2183–2192, 2002.
    [57] S. Zhao, D. E. Kruse, K. W. Ferrara, and P. A. Dayton, “Acoustic response from adherent targeted contrast agents,” J. Acoust Soc Am., vol. 120, no. 6, pp. EL63–EL69, 2006.
    [58] A. Novell, S. van der Meer, M. Versluis, N. de Jong, and A. Bouakaz, “Contrast agent response to chirp reversal: simulations, optical observations, and acoustical verification,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 56, pp. 1199–1206, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE