簡易檢索 / 詳目顯示

研究生: 陳淵琮
論文名稱: 基於產品結構變異降低產品開發之環境衝擊
Reduce the environmental impact of product development based on product structure variation
指導教授: 瞿志行
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 產品開發產品結構綠色設計生命週期評估基因演算法禁忌搜尋法動態規劃
外文關鍵詞: Product development, Product Structure, Green Design, Life Cycle Assessment, Genetic Algorithm, Tabu Search, Dynamic Programming
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於環保意識抬頭,各國紛紛制定環保限制指令,輸入之產品必須經由生命週期評估,確保達到相關規定,對於產品開發帶來極大的衝擊。現今產品大多於量產階段,才進行生命週期評估,對於不符合法規的結果,僅能以設計變更方式進行補救,能改善的部分相當有限,應提早於設計階段考量環境衝擊。以往的相關研究,缺乏嚴謹的定量分析方法。有鑑於此,本研究提出創新性產品結構變異方式,發展在設計階段對於環境衝擊的量化評估方法論,藉此提升產品開發的整體效率。利用零件特徵定義方式,進行零件功能、製造、組裝及合併的產品結構分析,並結合Solid WorksTM電腦輔助設計軟體,進行產品結構上幾何及物理性質合理判斷。以環境衝擊指標作為目標,透過基因演算法計算零件組合、禁忌搜尋法規劃組裝順序,以及動態規劃做供應商選擇,自動求得對應最佳品結構設計。可同時評估生命週期中,產品原物料開採、製造與組裝能源消耗與產品運輸等環境衝擊。研究內容引用國內生命週期評估資料庫,首次針對本土資料進行量化分析,可作為同時考量產品設計及環境衝擊之最佳化產品結構的決策依據,實現永續設計的概念。


    Many countries have enforced environmental protection directives due to the recent awareness of environmental issues. They require the products imported have to comply with the directives by lifecycle assessment. This results in a huge impact on product development. Currently most products perform lifecycle assessment at the production/manufacturing stage. Any problems discovered so late can only be corrected through engineering changes, which involve high cost but low efficiency. The assessment needs to be conducted at early stages of a product lifecycle. However, previous studies failed to offer rigorous or quantitative methods on this matter. Thus, this research proposes a systematic method that reduces the environmental impact in the system design stage based on automatic variation of product structure. Product structure is optimized with the objective as minimization of CO2 emission of the entire product development process. CAD technologies are integrated for automatic product assembly and interference check of assembly process. Genetic Algorithms are applied to optimize selection of components while maintaining the product design functions. The assembly sequence is determined by Tabu search. Dynamic programming techniques are employed to choose suppliers. The results are combined to obtain optimal product structure design in consideration of CO2 emission during three major phases of a product life cycle: raw material production, assembly/manufacturing, and transportation. This work is the first study that utilizes domestic LCA data for quantitative analysis of the environmental impact during product development. It realizes the concept of sustainable design using actual data. The proposed method works as a decision-making tool in product design for reducing environmental impact.

    摘要 西文摘要 致謝辭 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2研究目的 1.3 研究架構 第二章 文獻探討 2.1文獻探討 2.1.1 產品結構 2.1.2功能模組 2.1.3 供應鏈 2.1.4 綠色設計 第三章 生命週期評估 3.1 生命週期評估簡介 3.2 生命週期評估方法論 3.3 目的與範疇界定 4.4 盤查分析 3.5 衝擊評估與闡釋 3.6 生命週期評估軟體介紹 第四章 產品結構變異對環境衝擊影響 4.1 零件設計方式 4.2 零件製造 4.2.1 零件生產製程 4.2.2 零件組合變異 4.3 零件組裝 4.3.1 組裝順序建立 4.3.2 組裝介面定義及組裝製程 4.4 零件合併 4.4.1 複雜度參數 4.5 供應商選擇與運輸 4.6 Solid WorksTM輔助開發 第五章 最佳化產品結構演算法 5.1 基因演算法(GA)架構 5.1.1 零件組合基因編碼與解碼 5.1.2 適應度函數 5.1.3 GA演化過程 5.2 禁忌搜尋法(TS)演算法架構 5.2.1 禁忌搜尋法編碼與鄰近解介紹 5.2.2 TS搜尋過程 5.3 動態規劃架構 5.3.1動態規劃問題定義 5.3.2動態規劃求解過程 5.4 不同階段產品績效評估 5.4.1 零件組合變異 5.4.2 可合併零件之零件組合變異 5.4.3 單一產品組裝順序變異 5.4.4 零件組合及組裝順序考量 第六章 演算法實作範例 6.1 演算法實作環境 6.2 電腦椅設計範例 6.2.1 零件選擇的產品結構變異最佳化 6.2.2 零件合併之產品結構變異最佳化 6.2.3 固定產品結構下組裝順序變異最佳化 6.3 綜合零件組合及組裝順序考量 6.4 小結 第七章 結論與未來研究方向 7.1 方法論延伸應用與討論 7.1.1 協同規格零件設計 7.1.2 法規需求決策 7.1.3 針對不同階段設計 7.1.4 目前研究限制 7.2 結論 7.3 未來研究方向 參考文獻 附錄一 電腦椅零件資料庫與特徵資訊

    [1] Gutowski T., Murphy C., Allen D., Bauer D., Bras B., Piwonka T., Sheng P., Sutherland J., Thurston D., Wolff E., “Environmentally Benign Manufacturing: Observations From Japan, Europe and the United States,” Journal of Cleaner Production, Volume 13, Issue 1, Pages 1-17, 2005.
    [2] Fiksel J., Fiksel J.R., Design for Environment: Creating Eco-Efficient Products and Processes, McGraw-Hill, New York, 1996.
    [3] Alting L., Hauschild M., Wenzel H., Environmental Assessment of Products, Kluwer Academic Publishers, Boston, 1997.
    [4] Frei M., Zust R., “The Eco-effective Product Design - The Systematic Including of Environmental Aspects in Defining Requirements,” In Proceedings of the 4th CIRP International Seminar on Life Cycle Engineering, Berlin, Germany, Pages 395-406, 1997.
    [5] William F. Hoffman III., “Recent Advances in Design for Environment at Motorola,” Journal of Industrial Ecology, Volume 1, Issue 1, Pages 131-141, 1997.
    [6] Hendrickson C.T., Matthews H.S., Weber C.L., “The Importance of Carbon Footprint Estimation Boundaries,” Environmental Science & Technology, Volume 42, Issue 16, Pages 5839-5842, 2008.
    [7] Desmira N., Fujimoto H., Narita H., “Environmental Burden Analysis for Machining Operation Using LCA Method,” Manufacturing Systems and Technologies for the New Frontier, The 41st CIRP Conference on Manufacturing Systems, Tokyo, Japan, May 26–28, 2008.
    [8] Cooper J., Goodchild A., O’Donnell B., Ozawa T., “The Relative Contribution of Transportation to Supply Chain Greenhouse Gas Emissions: A Case Study of American Wheat,” Transportation Research Part D-Transport and Environment, Volume 14, Issue 7, Pages 487-492, 2009.
    [9] Leibrecht S., “Fundamental Principles for CAD-based Ecological Assessments,” I International Journal of Life Cycle Assessment, Volume 10, Issue 6, Pages 436-444, 2005.
    [10] Regli W.C., Cicirello V.A., “Managing Digital Libraries for Computer-aided Design”, Computer-Aided Design, Volume 32, Issue 2, Pages 119-132, 2000.
    [11] Kwak M., Kim H.M., “Evaluating End-of-Life Recovery Profit by a Simultaneous Consideration of Product Design and Recovery Network Design,” Journal of Mechanical Design, Volume 132, Issue 7, Article Number 071001, 2010.
    [12] Ulrich K., “The role of product architecture in the manufacturing firm,” Research Policy, Volume 24, Issue 3, Pages 419-440, 1995.
    [13] Stone R.B., McAdams D.A., Kayyalethekkel V.J., “A product architecture-based conceptual DFA technique,” Design Studies, Volume 25, Issue 3, Pages 301-325, 2004.
    [14] Ilgina M.A., Gupta S.M., “Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art,” Journal of Environmental Management, Volume 91, Issue 3, Pages 563-591, 2010.
    [15] Cristofari M., Deshmukh A., Wang B., “Green quality function deployment,” In Proceedings of the 4th International Conference on Environmentally Conscious Design and Manufacturing, Cleveland, Ohio, July 23–25, Pages 297–304, 1996.
    [16] Zhang Y., Wang H.P., Zhang C., “Green QFD-II: a life cycle approach for environmentally conscious manufacturing by integrating LCA and LCC into QFD matrices,” International Journal of Production Research, Volume 37, Issue 5, Pages 1075-1091, 1999.
    [17] Mehta C., Wang B., “Green quality function deployment III: a methodology for developing environmentally conscious products,” Journal of Design and Manufacturing Automation, Volume 4, Issue 1, Pages 1-16, 2001.
    [18] Santos-Reyes D.E., Lawlor-Wright T., “A design for the environment methodology to support an environmental management system,” Integrated Manufacturing Systems, Volume 12, Issue 5, Pages 323–332, 2001.
    [19] Madu C.N., Kuei C., Madu I.E., “A hierarchic metric approach for integration of green issues in manufacturing: a paper recycling application,” Journal of Environmental Management, Volume 64, Issue 3, Pages 261-272, 2002,.
    [20] Bovea M.D., Wang B., “Identifying environmental improvement options by combining life cycle assessment and fuzzy set theory,” International Journal of Production Research, Volume 41, Issue 3, pages 593 –609, 2003.
    [21] Bovea M.D., Wang B., “Redesign methodology for developing environmentally conscious products,” International Journal of Production Research, Volume 45, Issue 18-19, pages 4057-4072 , 2007.
    [22] Bevilacqua M., Ciarapica F.E., Giacchetta G., “Development of a sustainable product lifecycle in manufacturing firms: a case study,” International Journal of Production Research, Volume 45, Issue 18-19, pages 4073-4098 , 2007.
    [23] Boks C., Stevels A., “Essential perspectives for Design for Environment; Experiences from the electronics industry,” International Journal of Production Research, Volume 45, Issue 18-19, pages 4021-4039 , 2007.
    [24] Sakao T., A QFD-centred design methodology for environmentally conscious product design, International Journal of Production Research, Volume 45, Issue 18-19, pages 4143–4162, 2007.
    [25] Grote C.A., Jones R.M., Blount G.N., Goodyer J., Shayler M., “An approach to the EuP Directive and the application of the economic eco-design for complex products,” International Journal of Production Research, Volume 45, Issue 18-19, pages 4099–4117, 2007.
    [26] Kuo T.C., “Enhancing disassembly and recycling planning using life-cycle analysis,” Robotics and Computer-Integrated Manufacturing, Volume 22, Issues 5-6, Pages 420-428, 2006.
    [27] Zhu J.Y., Deshmukh A., “Application of bayesian decision networks to life cycle engineering in green design and manufacturing,” Engineering Applications of Artificial Intelligence, Volume 16, Issue 2, Pages 91-103, 2003.
    [28] Arena U., Mastellone M.L., Perugini F., “The environmental performance of alternative solid waste management options: a life cycle assessment study,” Chemical Engineering Journal, Volume 96, Issues 1-3, Pages 207-222, 2003.
    [29] Holloway L., “Materials selection for optimal environmental impact in mechanical design,” Materials & Design, Volume 19, Issue 4, Pages 133-143. , 1998
    [30] Giudice F., La Rosa G., Risitano A., “Materials selection in the life-cycle design process: a method to integrate mechanical and environmental performances in optimal choice,” Materials & Design, Volume 26, Issue 1, Pages 9-20, 2005.
    [31] Tseng H.E., Chang C.C., Li J.D., “Modular design to support green life-cycle engineering,” Expert Systems with Applications, Volume 34, Issue 4, Pages 2524-2537, 2008.
    [32] Zhou C.C., Yin G.F., Hu X.B., “Multi-objective optimization of material selection for sustainable products: artificial neural networks and genetic algorithm approach,” Materials & Design, Volume 30, Issue 4, Pages 1209-1215, 2009.
    [33] Huang H.H., Liu Z.F., Zhang L., Sutherland J.W., “Materials selection for environmentally conscious design via a proposed life cycle environmental performance index,” International Journal of Advanced Manufacturing Technology, Volume 44, Issue 11-12, Pages 1073–1082,2009.
    [34] Chung C.J., Wee H.W., “Green-product-design value and information-technology investment on replenishment model with remanufacturing,” International Journal of Computer Integrated Manufacturing, Volume 23, Issue 5, Pages 466–485, 2010.
    [35] Lambert A.J.D., “Disassembly sequencing: a survey,” International Journal of Production Research, Volume 41, Issue 16, Pages 3721–3759, 2003.
    [36] Fixson S.K., “Product architecture assessment: a tool to link product, process, and supply chain design decisions,” Journal of Operations Management, Volume 23, Issue 3-4, Pages 345–369, 2005.
    [37] Hsu H.M., Wang W.P., “Dynamic programming for delayed product differentiation,” European Journal of Operational Research, Volume 156, Issue 1, Pages 183–193, 2004.
    [38] Baumann H., Boons F., Bragd A., “Mapping the green product development field: engineering, policy and business perspectives,” Journal of Cleaner Production, Volume 10, Issue 5, Pages 409–425,2002.
    [39] Handfield R., Walton S.V., Sroufe R., Melnyk S.A., “Applying environmental criteria to supplier assessment: A study in the application of the Analytical Hierarchy Process,” European Journal of Operational Research, Volume 141, Issue 1, Pages 70–87, 2002.
    [40] Noci G., “Designing 'green' vendor rating systems for the assessment of a supplier's environmental performance,” European Journal of Purchasing & Supply Management, Volume 3, Issue 2, Pages 103-114, 1997.
    [41] Gonzalez B., Adenso-Diaz B., “A bill of materials-based approach for end-of-life decision making in design for the environment,” International Journal of Production Research, Volume 43, Issue 10, Pages 2071–2099, 2005.
    [42] Moore K.E., Gungor A., Gupta S.M., “Petri net approach to disassembly process planning for products with complex AND/OR precedence relationships,” European Journal of Operational Research, Volume 35, Issue 2, Pages 428-449, 2001.
    [43] Huang Y.M., Liao Y., “Disassembly processes with disassembly matrices and effects of operations,” Assembly Automation, Volume 29, Issue 4 , Pages 348-357, 2009.
    [44] Rebitzer G., Ekvall T., Frischknecht R., Hunkeler D., Norris G., Rydberg T., Schmidt W.P., Suh S., Weidema B.P., Pennington D.W., “Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis,and applications,” Environment International, Volume 30, Issue 5, Pages 701–720, 2004.
    [45] Finkbeiner M., Inaba A., Tan R.B.H., Christiansen K., Klüppel H.J., “The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044,” International Journal of Life Cycle Assessment, Volume 11, Issue 2, Pages 80–85,2006.
    [46] 行政院環境保護署,產品與服務碳足跡計算指引, http://cfp.epa.gov.tw/downloadFiles/碳足跡計算指引.pdf, 2010.
    [47] Ekvall T., “Attributional and consequential LCI modeling,” In LCA/LCM 2003, Seattle, September 22-25, 2003.
    [48] Suh S., Huppes G., “Methods for Life Cycle Inventory of a product” Journal of Cleaner Production, Volume 13, Issue 7, Pages 687-697, 2005.
    [49] PRé Consultants, Introduction to LCA with SimaPro 7.
    [50] Ecoinvent, http://www.ecoinvent.ch/, 2010.
    [51] Boustead, http://www.boustead-consulting.co.uk/, 2010.
    [52] IDEMAT, http://www.idemat.nl/, 2010.
    [53] SimaPro 7, http://www.pre.nl/simapro/, 2010.
    [54] DoITPro, http://itri.org.tw/chi/tech-transfer/04.asp?RootNodeId=040&NodeId=041&id=2023, 2010.
    [55] DFMPro Software, http://dfmpro.geometricglobal.com/, 2010.
    [56] Rosato D.V., Rosato D.V., Rosato M.G., Injection Molding Handbook, Kluwer Academic Publishers, Boston, 2000.
    [57] Han J.H., Pratt M., Regli W.C., “Manufacturing Feature Recognition from Solid Models: A Status Report”, IEEE Transactions on Roboticsand Automation, Volume 16, Issue 6, Pages 782-796, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE