簡易檢索 / 詳目顯示

研究生: 劉光宇
Liu, Guang-Yu
論文名稱: 運用磁性流變效應於微機電結構之剛性調變
MEMS Structure With Tunable Stiffness Using Magnetorheological Effect
指導教授: 方維倫
口試委員: 蔡佳霖
陳慶耀
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 77
中文關鍵詞: 磁性流體剛性調變磁性流變效應
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將常用於工業的磁性流體運用於微機電系統,由於微機電元件尺寸為微米尺寸的緣故,並且常有可動件作動,所以微結構的機械性質對於元件有相當的影響,因應不同的元件有相對應的需求或較合適的剛性,例如:微神經探針在刺入生物體時需要相當的剛性以方便刺入,但是剛性大的微神經探針刺入後會產生相對位移,使得生物體受到破壞,造成元件使用壽命縮短,因此可調變剛性的機制在此使用情況下是有其必要性;本研究是利用磁性流體在一均勻磁場的情況下,透過磁場施加在磁性粒子使之產生磁性並且會與磁場方向同方向的機制,透過改變粒子排列方向以及控制磁場大小來達到調變微結構剛性的功能,磁場的大小、方向、磁性粒子的濃度、尺寸都是其控制此機制的參數。


    中文摘要 i 致謝 iii 目錄 v 圖目錄 vii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 磁性流體 3 1-2-2 磁性高分子 6 1-2-3 機械性質改變 7 1-3 研究動機 10 第二章 設計與分析 22 2-1 磁性材料與溶劑選定 22 2-2 磁性流體濃度控制剛性設計概念 24 2-3 磁性粒子柱狀結構調變剛性原理設計 24 2-3-1挫曲實驗萃取等效楊氏模數 26 第三章 製程與結果 33 3-1 製程流程 33 3-2 製程討論 34 3-3 製程結果 36 第四章 量測與結果 46 4-1 量測架設與結果 46 4-1-1 靜態量測 46 4-1-2 動態量測 48 4-2 量測討論 50 4-2-1 靜態量測討論 50 4-2-2 動態量測討論 53 第五章 結論 68 5-1 研究成果 68 5-2 未來工作 69 參考文獻 73

    [1] C. Galindo-Gonzalez, J. de Vicente, M. M. Ramos-Tejada, M. T. Lopez-Lopez, F. Gonzalez-Caballero, and J. D. G. Duran, “Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles,” Langmuir, 21, pp. 4410-4419, 2005.
    [2] http://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5
    [3] C. Galindo-Gonzalez, M. T. Lopez-Lopez, and J. D. G. Duran, “Magnetorheological behavior of magnetite covered clay particles in aqueous suspensions,” Journal of Applied Physics, 112, 2012.
    [4] M. Ivey, J. Liu, Y. Zhu and S. Cuillas, “Magnetic-field-induced structural transitions in a ferrofluidemulsion,” Physical review E, 63, 2000.
    [5] J. D. Carlson, M. J. Chrzan and F. O. James, “Magnetorheological fluid dampers,” US Patent No. 5, 284, 330.
    [6] J. D. Carlson, D. M. Catanzarite and K. A. St Clare, “Commercial magneto-rheological fluids devices,” International Journal of Modern Physics B, 10, 1996.
    [7] V. D. Chase, “Cutting edge,” Appliance Manufacture, 1996.
    [8] S. B. Gentry, J. F. Mazur and B. K. Blackburn, “Muscle training and physical rehabilitation machine using electro-rheological magnetic fluid,” US Patent No. 5, 460, 585.
    [9] M. R. Jolly, J. D. Carlson, B. C. Munoz and T. A. Bullions, “The magnetoviscoelastic effect of elastomer composites consisting of ferrous particles embedded in a polymer matrix,” Journal of Intelligent Material Systems and Structures, 1996.
    [10] A. Kasahara, A. Yamada, T. Yoshizawa, K. Wada and H. Yamasaki, “Viscoelastic substance and objective lens driving apparatus with the same,” US Patent No.5, 337, 865.
    [11] C. P. Bowen, T. R. Shrout, R. E. Newnham and C. A. Randal, “Tunable electric field processing of composite materials,” Journal of Intelligent Material Systems and Structures, 6, pp. 159-168, 1995.
    [12] R. Kotitz, W. Weitschies, L. Trahms, W. Brewer and W. Semmler, “Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, 194, pp. 62-68, 1999.
    [13] Y. H. Hwang and X. l. Wu, “Quasi-two-dimensional domain structures of magnetic particles in a static field,” Physical Review E, 49, 1994.
    [14] D. Spasojevic, T. F. Irvine and N. Afgan, “The effect of a magnetic field on the rheodynamic behavior of ferromagnetic suspensions,” International Journal of Multiphase Flow, 1, pp. 607-622, 1974.
    [15] G. Harpavat, “Magnetostatic forces on a chain of spherical beads in a nonuniform magnetic field,” Magnetics, IEEE Transactions, 1974.
    [16] W. -L. Luo, S. R. Nagel, T. F. Rosenbaum and R. E. Rosensweig, “Dipole interactions with random anisotropy in a frozen ferrofluid,” Physical Review E, 67, 1991.
    [17] J. M. Ginder and L. C. Davis, “Shear stresses in magnetorheologicalfluids: role of magnetic saturation,” Applied Physics Letters, 65, 1994.
    [18] M. R. Jolly, J. D. Carlson and B. C. Munoz, “A model of the behavior of magnetorheological materials,” Smart Material and Structures, 5, pp. 607-614, 1996.
    [19] M. T. Lopez-Lopez, P. Kuzhir, S. Lacis, G. Bossis, F. Gonzalez-Caballero and J. D. G. Duran, “Magnetorheology for suspensions of solid particles dispersed in ferrofluids,” Journal of Physics: Condensed Mater, 18, 2006.
    [20] A. Rajca, J. Wongsriratanakul and S. Rjca, “Magnetic Ordering in an Organic Polymer,” Science, 294, 2001.
    [21] Z. Varga, G. Filipcsei and M. Zrinyi, “Smart composites with controlled anisotropy,” Polymer, 46, 2005.
    [22] Z. Varga, G. Filipcsei and M. Zrinyi, “Magnetic field sensitive functional elastomers with tuneable elastic modulus,” Polymer, 47, 2006.
    [23] A. Boczkowska, S. F. Awietjan, T. Wejrzanowski and K. J. Kurzydlowski, “Image analysis of the microstructure of magnetorheological elastomers,” Journal of Materials Science, 2009.
    [24] G. Filipcsei and M. Zrinyi, “Magnetodeformation effects and the swelling of ferrogels in a uniform magnetic field,” Journal of Physics: Condensed Matter, 22, 2010.
    [25] J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan and C. Weder, “Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis,” Science, 319, 2008.
    [26] C. Majidi and R. J. Wood, “Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field,” Applied Physics Letters, 97, 2010.
    [27] V. Trappe, V. Prasad, L. Clpelletti, P. N. Serge and D. A. Weltz, “Jamming phase diagram for attractive particles,” Nature, 411, 2001.
    [28] Y. Hirose and Y. Otsubo, “Electrorheology of suspensions of poly(ethylene glycol)/poly(vinyl acetate) blend particles,” Colloids and Surfaces A: Physicochemical and Engineering Asoects, 2012.
    [29] F. Wu, M. Im and E. Yoon, “A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility,” Transducer, 2011.
    [30] Y. -C. Yen, Y. -T. Lee, Y. -C. Chang and W. Fang, “A pneumatic neural probe structure fabricated by parylene thermal bonding technique,” MEMS, 2012.
    [31] D. Ziegler, T. Suzuki and S. Takeuchi, “Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene,” Journal of Microelectromechanical Systems, 15, 6, 2006.
    [32] S. Ahmed and F. R. Jones, “A review of particulate reinforcement theories for polymer composites,” Journal of Materials Science, 25, pp. 4933-4942, 1990.
    [33] A. Einstein, Investigation on Theory of Brownian Motion. Dover, New York, 1956.
    [34] H. M. Smallwood, “Limiting law of the reinforcement of rubber,” Journal of Applied Physics, 15, 1944.
    [35] M. Mooney, “The viscosity of a concentrated suspension of spherical particles,” Journal of Colloid Science, 6, 1951.
    [36] E. Guth, “Nuclear magnetic response study of transitions in polymers,”Journal of Applied Physics, 16, 1951.
    [37] http://zh.wikipedia.org/zh-tw/%E9%93%81%E7%A3%81%E6%B5%81%E4%BD%93
    [38] http://www.ferrotec.com.tw/products/magnetism/
    [39] http://tw.yahoo.com/
    [40] B. K. Nguyen, K. Matsumoto and I. Shimoyama, “Tensile film stress of parylene deposited on liquid,” Langmuir, 26, 2010.
    [41] R. C. Hibbeler, Mechanic of Materials. Pearson, 2008.
    [42] W. Weaver, Jr. S. P. Timoshenko and D. H. Young, Vibration Problems in Engineering. John Wiley & Sons, 1990.
    [43] http://zh.wikipedia.org/wiki/Wikipedia:%E9%A6%96%E9%A1%B5
    [44] http://zh.wikipedia.org/zh-tw/%E9%93%81%E7%A3%81%E6%B5%81%E4%BD%93

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE