簡易檢索 / 詳目顯示

研究生: 張純涓
Chang, Chun-Chuan
論文名稱: 調控白色念珠菌嗜鐵蛋白SIT1基因轉錄之分子機制研究
Molecular mechanisms of transcriptional regulation for the siderophore transporter gene SIT1 in Candida albicans
指導教授: 藍忠昱
Lan, Chung-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 54
中文關鍵詞: 白色念珠菌嗜鐵蛋白
外文關鍵詞: Candida albicans, iron, siderophore
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於每一種生物體的生長而言,鐵是一種必要的營養源。有些微生物寄生在人體,它們會在活體上繁殖並利用寄主做為營養來源,因而傷害寄主造成疾病。其中,調控體內鐵質的含量即是寄主對抗微生物感染的一種重要機制,微生物病原菌已經被研究出可利用各種不同的機制以便從寄主及其周邊環境中獲得鐵。此外,寄主體中的鐵質含量也是一個引發病原菌致病力的環境因子。白色念珠菌(Candida albicans)是一種伺機性的真菌病原菌,它通常是與寄主共生,然而,當寄主的免疫功能下降時,它可能導致危及生命的感染疾病。在白色念珠菌體中目前發現至少有三種不同的鐵攝取系統,其中包括嗜鐵蛋白(siderophore)吸收系統。 白色念珠菌可藉由細胞表面的運輸蛋白CaSit1運送嗜鐵蛋白進而攝取鐵質,CaSit1並且已被報導會參與白色念珠菌入侵到寄主組織之過程。CaSIT1基因的轉錄通常在低鐵環境中會大量表達;相反的,在高鐵的環境中則會受到抑制。本篇論文主要研究重點是藉由分析CaSIT1啟動子(promoter)的基因序列來研究CaSIT1的分子調控機制。經過一連串刪除啟動子區域的實驗,發掘了一段22個鹼基對的順式序列,參與抑制CaSIT1在高鐵環境中的表現。另兩段區域分別是27個和23個鹼基對,則參與CaSIT1基因在低鐵環境中的大量表達。此外,電泳遷移率檢驗(electrophoretic mobility shift assay)的實驗結果也明顯表明了有某些蛋白質可結合於所發現的鹼基對調控區域。最後,利用去氧核醣核酸親和沉澱法(DNA affinity precipitation assay)及液相層析儀質譜儀(LC-MS/MS)也分析、鑑別可能調控CaSIT1的那些DNA-鍵結蛋白質。本研究提供了一項幫助我們了解白色念珠菌致病力相關基因對鐵質反應的調控機制模式。


    Iron is essential for the growth of almost every organism. Importantly, iron-withholding is also a mechanism for the host to against microbial infection. Microbial pathogens have developed different systems to acquire iron from the host and their surrounding environments. In addition, iron availability is shown to serve as a signal to induce the expression of virulence traits of pathogens. Candida albicans, an opportunistic fungal pathogen, usually presents as a commensal in the host. However, when the host becomes immunocompromised, it can cause life-threatening system infections. C. albicans harbors at least three different iron-uptake systems, including a siderophore uptake system mediated by a ferrichrome siderophore transporter Sit1. CaSit1 not only does uptake siderophore, but is also involved in C. albicans invasion to the host tissues. Transcription of the CaSIT1 gene is highly expressed at the low iron condition, while is repressed in high iron environment. The main focus of this study is to examine transcriptional regulation of CaSIT1 by analyzing the 5’UTR of CaSIT1 fused with a lacZ reporter gene. Serial deletion of the promoter region of CaSIT1 revealed a 22-bp cis-regulatory element that is responsible for gene repression at high-iron condition, while a 27-bp region and a 23-bp region are involved in gene activation under a low-iron condition. In addition, electrophoretic mobility shift assays were performed to examine proteins possibly interacting with these elements. The results suggest that there is a DNA binding protein represses CaSIT1 in high iron condition. Then, DNA affinity precipitation assay and LC-MS/MS were carried out to identify the protein which interacts with this cis-element. Together, this study provides an important insight for our understanding how C. albicans regulates its virulence-related gene in response to the host environments, such as iron availability.

    Table of Contents 中文摘要 I Abstract II 致謝辭 III Table of Contents IV List of Tables VI List of Figures VII List of Supplemental Figures VIII 1. Introduction - 1 - 1.1 Candida albicans and human health - 1 - 1.2 Regulation of C. albicans virulence factors in response to environmental signals - 1 - 1.3 Iron availability and C. albicans infection - 2 - 1.4 Iron acquisition systems of C. albicans - 3 - 1.5 Regulation of SIT1 gene expression in response to iron availability - 5 - 2. Materials and Methods - 7 - 2.1 Strains and media - 7 - 2.2 Oligonucleotides - 7 - 2.3 Grow condition - 7 - 2.4 Total RNA isolation and RT-PCR - 8 - 2.5 Plasmid construction and yeast transformation - 8 - 2.6 Genomic DNA isolation - 10 - 2.7 Southern blot - 10 - 2.8 β-Galactosidase assays - 11 - 2.9 Preparation of whole cell extract - 11 - 2.10 Preparation of nuclear extract - 12 - 2.11 Western blotting - 13 - 2.12 Electrophoretic mobility shift assays (EMSA) - 13 - 2.13 Biotinylated-DNA affinity precipitation assay - 14 - 2.14 MASS compatible silver stain - 15 - 2.15 In-gel digestions and LC- MASS/MASS - 15 - 3. Results - 17 - 3.1 C. albicans SIT1 gene expression is iron-responsive - 17 - 3.2 Constructions of serial deletion mutants of CaSIT1 promoter - 17 - 3.3 Phenotypic characterization of various mutants of SIT1p-lacZ fusions - 19 - 3.4 Identification of iron responsive regions (IRR) in the SIT1 promoter - 19 - 3.5 IRR1 has distinct protein binding activities at different iron condition - 20 - 3.6 Identification of IRR1-binding protein(s) in Candida albicans - 21 - 4.Discussion - 23 - 5.References - 26 -

    Abe, F., M. Tateyma, et al. (1985). "Experimental candidiasis in iron overload." Mycopathologia 89(1): 59-63.
    Almeida, R. S., S. Brunke, et al. (2008). "The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin." PLoS Pathog 4(11): e1000217.
    Almeida, R. S., D. Wilson, et al. (2009). "Candida albicans iron acquisition within the host." FEMS Yeast Res 9(7): 1000-1012.
    Almirante, B., D. Rodriguez, et al. (2005). "Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, barcelona, Spain, from 2002 to 2003." J Clin Microbiol 43(4): 1829-1835.
    An, Z., B. Mei, et al. (1997). "The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor." EMBO J 16(7): 1742-1750.
    An, Z., Q. Zhao, et al. (1997). "The second finger of Urbs1 is required for iron-mediated repression of sid1 in Ustilago maydis." Proc Natl Acad Sci U S A 94(11): 5882-5887.
    Andrews, S. C., A. K. Robinson, et al. (2003). "Bacterial iron homeostasis." FEMS Microbiol Rev 27(2-3): 215-237.
    Ardon, O., H. Bussey, et al. (2001). "Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae." J Biol Chem 276(46): 43049-43055.
    Askwith, C. C., D. de Silva, et al. (1996). "Molecular biology of iron acquisition in Saccharomyces cerevisiae." Mol Microbiol 20(1): 27-34.
    Beigi, R. H., L. A. Meyn, et al. (2004). "Vaginal yeast colonization in nonpregnant women: a longitudinal study." Obstet Gynecol 104(5 Pt 1): 926-930.
    Bernier, G., V. Girijavallabhan, et al. (2005). "Desketoneoenactin-siderophore conjugates for Candida: evidence of iron transport-dependent species selectivity." Antimicrob Agents Chemother 49(1): 241-248.
    Blaiseau, P. L., E. Lesuisse, et al. (2001). "Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast." J Biol Chem 276(36): 34221-34226.
    Braun, B. R., W. S. Head, et al. (2000). "Identification and characterization of TUP1-regulated genes in Candida albicans." Genetics 156(1): 31-44.
    Eck, R., S. Hundt, et al. (1999). "A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption." Microbiology 145 ( Pt 9): 2415-2422.
    Ernst, J. F. (2000). "Transcription factors in Candida albicans - environmental control of morphogenesis." Microbiology 146 ( Pt 8): 1763-1774.
    Fratti, R. A., P. H. Belanger, et al. (1998). "Endothelial cell injury caused by Candida albicans is dependent on iron." Infect Immun 66(1): 191-196.
    Gaur, N. A., R. Manoharlal, et al. (2005). "Expression of the CDR1 efflux pump in clinical Candida albicans isolates is controlled by a negative regulatory element." Biochem Biophys Res Commun 332(1): 206-214.
    Gillum, A. M., E. Y. Tsay, et al. (1984). "Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations." Mol Gen Genet 198(1): 179-182.
    Gobin, J. and M. A. Horwitz (1996). "Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall." J Exp Med 183(4): 1527-1532.
    Haas, H. (2003). "Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage." Appl Microbiol Biotechnol 62(4): 316-330.
    Haas, H., K. Angermayr, et al. (1997). "Molecular analysis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene." Gene 184(1): 33-37.
    Haas, H., M. Eisendle, et al. (2008). "Siderophores in fungal physiology and virulence." Annu Rev Phytopathol 46: 149-187.
    Haas, H., I. Zadra, et al. (1999). "The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake." J Biol Chem 274(8): 4613-4619.
    Hammacott, J. E., P. H. Williams, et al. (2000). "Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant." Microbiology 146 ( Pt 4): 869-876.
    Heymann, P., M. Gerads, et al. (2002). "The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion." Infect Immun 70(9): 5246-5255.
    Hissen, A. H., A. N. Wan, et al. (2005). "The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence." Infect Immun 73(9): 5493-5503.
    Holzberg, M. and W. M. Artis (1983). "Hydroxamate siderophore production by opportunistic and systemic fungal pathogens." Infect Immun 40(3): 1134-1139.
    Hu, C. J., C. Bai, et al. (2002). "Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans." J Biol Chem 277(34): 30598-30605.
    Ismail, A., G. W. Bedell, et al. (1985). "Siderophore production by the pathogenic yeast, Candida albicans." Biochem Biophys Res Commun 130(2): 885-891.
    Jung, W. H., A. Sham, et al. (2006). "Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans." PLoS Biol 4(12): e410.
    Kaneko, A., T. Umeyama, et al. (2006). "Tcc1p, a novel protein containing the tetratricopeptide repeat motif, interacts with Tup1p to regulate morphological transition and virulence in Candida albicans." Eukaryot Cell 5(11): 1894-1905.
    Kelly, K. A., C. M. Havrilla, et al. (1998). "Oxidative stress in toxicology: established mammalian and emerging piscine model systems." Environ Health Perspect 106(7): 375-384.
    Knight, S. A. and A. Dancis (2006). "Reduction of
    2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) is dependent on CaFRE10 ferric reductase for Candida albicans grown in unbuffered media." Microbiology 152(Pt 8): 2301-2308.
    Knight, S. A., E. Lesuisse, et al. (2002). "Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator." Microbiology 148(Pt 1): 29-40.
    Knight, S. A., G. Vilaire, et al. (2005). "Iron acquisition from transferrin by Candida albicans depends on the reductive pathway." Infect Immun 73(9): 5482-5492.
    Kumamoto, C. A. and M. D. Vinces (2005). "Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence." Cell Microbiol 7(11): 1546-1554.
    Lan, C. Y., G. Rodarte, et al. (2004). "Regulatory networks affected by iron availability in Candida albicans." Mol Microbiol 53(5): 1451-1469.
    Lesuisse, E., S. A. Knight, et al. (2002). "Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae." Yeast 19(4): 329-340.
    Maira, M., C. Martens, et al. (2003). "Dimer-specific potentiation of NGFI-B (Nur77) transcriptional activity by the protein kinase A pathway and AF-1-dependent coactivator recruitment." Mol Cell Biol 23(3): 763-776.
    Miele, R., D. Barra, et al. (2007). "A GATA-type transcription factor regulates expression of the high-affinity iron uptake system in the methylotrophic yeast Pichia pastoris." Arch Biochem Biophys 465(1): 172-179.
    Moye-Rowley, W. S. (2003). "Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences." Eukaryot Cell 2(3): 381-389.
    Naglik, J., A. Albrecht, et al. (2004). "Candida albicans proteinases and host/pathogen interactions." Cell Microbiol 6(10): 915-926.
    Naglik, J. R., S. J. Challacombe, et al. (2003). "Candida albicans secreted aspartyl proteinases in virulence and pathogenesis." Microbiol Mol Biol Rev 67(3): 400-428, table of contents.
    Naglik, J. R., C. A. Rodgers, et al. (2003). "Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections." J Infect Dis 188(3): 469-479.
    Navarro-Garcia, F., M. Sanchez, et al. (2001). "Virulence genes in the pathogenic yeast Candida albicans." FEMS Microbiol Rev 25(2): 245-268.
    Oberegger, H., M. Schoeser, et al. (2001). "SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans." Mol Microbiol 41(5): 1077-1089.
    Oberegger, H., I. Zadra, et al. (2002). "Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization." Biochem Soc Trans 30(4): 781-783.
    Odds, F. C., C. E. Webster, et al. (1988). "Candida concentrations in the vagina and their association with signs and symptoms of vaginal candidosis." J Med Vet Mycol 26(5): 277-283.
    Pelletier, B., J. Beaudoin, et al. (2002). "Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe." J Biol Chem 277(25): 22950-22958.
    Pelletier, B., J. Beaudoin, et al. (2003). "Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system." Nucleic Acids Res 31(15): 4332-4344.
    Ramanan, N. and Y. Wang (2000). "A high-affinity iron permease essential for Candida albicans virulence." Science 288(5468): 1062-1064.
    Ratledge, C. and L. G. Dover (2000). "Iron metabolism in pathogenic bacteria." Annu Rev Microbiol 54: 881-941.
    Reuss, O., A. Vik, et al. (2004). "The SAT1 flipper, an optimized tool for gene disruption in Candida albicans." Gene 341: 119-127.
    Romano, C., M. Papini, et al. (2005). "Onychomycosis in children: a survey of 46 cases." Mycoses 48(6): 430-437.
    Santos, R., N. Buisson, et al. (2003). "Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase." Microbiology 149(Pt 3): 579-588.
    Schug, J. (2008). "Using TESS to predict transcription factor binding sites in DNA sequence." Curr Protoc Bioinformatics Chapter 2: Unit 2 6.
    Singh, A., N. K. Dhillon, et al. (2008). "Identification and purification of CREB like protein in Candida albicans." Mol Cell Biochem 308(1-2): 237-245.
    Stearman, R., D. S. Yuan, et al. (1996). "A permease-oxidase complex involved in high-affinity iron uptake in yeast." Science 271(5255): 1552-1557.
    Sudbery, P., N. Gow, et al. (2004). "The distinct morphogenic states of Candida albicans." Trends Microbiol 12(7): 317-324.
    Sumner, L. W., B. Wolf-Sumner, et al. (2002). "Silver stain removal using H2O2 for enhanced peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry." Rapid Commun Mass Spectrom 16(3): 160-168.
    Tortorano, A. M., J. Peman, et al. (2004). "Epidemiology of candidaemia in Europe: results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based surveillance study." Eur J Clin Microbiol Infect Dis 23(4): 317-322.
    Uhl, M. A. and A. D. Johnson (2001). "Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans." Microbiology 147(Pt 5): 1189-1195.
    Urbanski, N. K. and A. Beresewicz (2000). "Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry." Acta Biochim Pol 47(4): 951-962.
    Weissman, Z. and D. Kornitzer (2004). "A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization." Mol Microbiol 53(4): 1209-1220.
    Weissman, Z., R. Shemer, et al. (2008). "An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans." Mol Microbiol 69(1): 201-217.
    Welch, K. D., M. E. Van Eden, et al. (2001). "Modification of ferritin during iron loading." Free Radic Biol Med 31(8): 999-1006.
    Wenzel, R. P. (1995). "Nosocomial candidemia: risk factors and attributable mortality." Clin Infect Dis 20(6): 1531-1534.
    Woodacre, A., R. P. Mason, et al. (2008). "Copper-dependent transcriptional regulation by Candida albicans Mac1p." Microbiology 154(Pt 5): 1502-1512.
    Yamada-Okabe, T., O. Shimmi, et al. (1996). "Isolation of the mRNA-capping enzyme and ferric-reductase-related genes from Candida albicans." Microbiology 142 ( Pt 9): 2515-2523.
    Yamaguchi-Iwai, Y., A. Dancis, et al. (1995). "AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae." EMBO J 14(6): 1231-1239.
    Zhou, L. W., H. Haas, et al. (1998). "Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa." Mol Gen Genet 259(5): 532-540.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE