研究生: |
許智盛 Hsu, Chih-Sheng |
---|---|
論文名稱: |
Repairing Carbon Nanotubes by Electrophilic Addition 親電加成之奈米碳管修復 |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 奈米碳管 、親電加成 、修復 、官能基化 |
外文關鍵詞: | carbon nanotubes, electrophilic addition, repair, functionalization |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Most existing chemical modification or functionalization methods of the carbon nanotubes in a sense destructively alter the structure of the nanotube’s π-conjugated framework. Using the nitrile reagents, the electrophilic addition reactions under certain conditions have modified and at the same time preserved the structure of the carbon nanotubes to have nearly the same electronic properties and thermal oxidation resistance, implying the following repair of the modified structure that is induced by the reagents. The attached imine functional groups can further repair the carbon nanotubes through the extension of the π-conjugated framework which is verified with the lowered ID/IG ratios and the delocalized C=N stretching peaks shown in the Raman and infrared spectra respectively. Different nitrile reagents we have used have shown general ability to functionalize the carbon nanotubes even at the room temperature. In this thesis, we have investigated the limitation and possible mechanism of this modification method.
現存大多數的奈米碳管化學改質或官能基化方法在某種程度上均對其π共軛框架(π-conjugated framework)造成破壞性的改變。使用帶有氰基(-CN)的試劑在特定條件下進行親電加成改變奈米碳管結構的同時,能夠保持其π共軛框架的完整性,保留幾近相同的電子性質及高溫氧化的耐受性,各項數據顯示了試劑後續對已改變結構的修復。由Raman和IR光譜中降低的ID/IG比值和位移的C=N吸收峰我們可以證明,在反應中附加在碳管上的亞胺基(C=N)藉由延伸碳管的π共軛框架,對碳管進行了進一步的修復。在實驗中我們使用的不同種類帶有氰基(-CN)的試劑皆表現出和碳管普遍的反應性,即使在常溫下也能進行反應。在此論文中,我們對此親電加成改質法的影響條件及可能的反應機構進行了調查及討論。
1. Kanungo, M.; Lu, H.; Malliaras, G. G.; Blanchet, G. B., Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science 2009, 323 (5911), 234-237.
2. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H. W.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E., Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301 (5639), 1519-1522.
3. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E., Fullerene pipes. Science 1998, 280 (5367), 1253-1256.
4. Holzinger, M.; Abraha, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A., Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 2003, 125 (28), 8566-8580.
5. Pompeo, F.; Resasco, D. E., Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine. Nano Lett. 2002, 2 (4), 369-373.
6. Qin, S. H.; Oin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E., Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc. 2004, 126 (1), 170-176.
7. Houben, J.; Fischer, W., The core synthesis of cetimides and cetons by the condensation of nitrills with aromatic and heterocyclic bonds. Journal Fur Praktische Chemie-Leipzig 1929, 123 (10/12), 313-329.
8. Houben, J.; Fischer, W., On a new method to produce cyclic nitrile through catalytic break-down (I. Announcement.). Berichte Der Deutschen Chemischen Gesellschaft 1930, 63, 2464-2472.
9. Houben, J.; Fischer, W., Nuclear synthesis of ketimides and ketones by nitrile condensation with aromatic and heterocyclic compounds, III. Announcement.: The synthesis of benzole, chlorinated benzol-hydrocarbon matter and 2-methyl-indole nitro and amino-aryl ketone with diphenyl ether. Berichte Der Deutschen Chemischen Gesellschaft 1931, 64, 2645-2653.
10. Houben, J.; Fischer, W., Presentation of the cyclic nitrile by means of catalytic composition, II Announcement - Direct cyanisation of the ring formed hydrogen and phenol-aethers. Berichte Der Deutschen Chemischen Gesellschaft 1933, 66, 339-349.
11. Tagmatarchis, N.; Georgakilas, V.; Prato, M.; Shinohara, H., Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem. Commun. 2002, (18), 2010-2011.
12. Tian, R.; Wang, X. B.; Li, M. J.; Hu, H. T.; Chen, R.; Liu, F. M.; Zheng, H.; Wan, L., An efficient route to functionalize singe-walled carbon nanotubes using alcohols. Appl. Surf. Sci. 2008, 255 (5), 3294-3299.
13. Tian, R.; Wang, X. B.; Xu, Y.; Li, S. Q.; Wan, L.; Li, M. J.; Cheng, J., Microwave-assisted functionalization of single-walled carbon nanotubes with 3-chloropropene. J. Nanopart. Res. 2009, 11 (5), 1201-1208.
14. Xu, Y.; Wang, X. B.; Tian, R.; Li, S. Q.; Wan, L.; Li, M. J.; You, H. J.; Li, Q.; Wang, S. M., Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides. Appl. Surf. Sci. 2008, 254 (8), 2431-2435.
15. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C., Solution properties of single-walled carbon nanotubes. Science 1998, 282 (5386), 95-98.
16. van der Pauw, L. J., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Research Reports 1958, 13, 1-9.
17. van der Pauw, L. J., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Technical Review 1958, 20, 220-224.
18. Bahr, J. L.; Yang, J. P.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M., Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123 (27), 6536-6542.
19. Hicks, J. C.; Jones, C. W., Controlling the density of amine sites on silica surfaces using benzyl spacers. Langmuir 2006, 22, 2676-2681.
20. Niwa, T.; Suehiro, T.; Yorimitsu, H.; Oshima, K., Carbon–carbon bond formations at the benzylic positions of N-benzylxanthone imines and N-benzyldi-1-naphthyl ketone imine. Tetrahedron 2009, 65, 5125–5131.