簡易檢索 / 詳目顯示

研究生: 楊宇富
論文名稱: 奈米碳管與奈米碳球對大腸桿菌存活之影響
Effects of Carbon Nanotubes and Carbon Nanopowders on Escherichia coli
指導教授: 戴念華
李紫原
張晃猷
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 奈米碳管單壁奈米碳管多壁奈米碳管奈米碳球大腸桿菌
外文關鍵詞: Carbon nanotubes, Single-wall carbon nanotubes, Multi-wall carbon nanotubes, Carbon nanopowders, E. coli, CNTs
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解日漸進入我們生活環境的奈米碳材料是否會對生態造成衝擊,本研究探討分散均勻的三種官能基化之奈米碳材料(單壁奈米碳管、多壁奈米碳管、奈米碳球)對典型微生物(大腸桿菌)的影響,研究結果可做為奈米碳材料對生物體毒化性的參考。
    本實驗室自行製備單壁與多壁奈米碳管粉末,及外購奈米碳球粉以探討奈米碳材料形貌對大腸桿菌的影響。經過官能基化處理後分析,發現奈米碳材料不但成功接上官能基而使水溶性變強,且尚保有材料本身之原始外貌與特性。
    經由標準平板測定法顯示,官能基化奈米碳球與單壁奈米碳管對細菌之存活率並無具體影響,而官能基化多壁奈米碳管則具有抑制細菌存活之效果。
    本研究進一步使用場發射掃描式電子顯微鏡(FE-SEM)探討大腸桿菌在與奈米碳材料接觸後的形貌,並以冷光儀偵測培養環境中的ATP濃度,進而證明官能基化多壁奈米碳管以物理機制碰撞而造成菌體破裂導致死亡。此結果顯示奈米碳材料對環境與微生物的可能影響與傷害機制。


    第1章 緒論..………………….………………………………………..…....1 1-1 奈米碳管的簡介………………………………………………………..1 1-1-1 奈米碳管的起源與結構……………………………………….…1 1-1-2 奈米碳管的製備…………………………………………….……3 1-2 細菌的簡介……………………………………………………….…….5 1-2-1 細菌形貌………………………………………….……….………5 1-2-2 細菌的分類……………………………………………….….……5 1-2-3 細菌的生理與生長曲線………………………………………..…6 1-2-4 細菌的生長需求…………………..………………………………7 1-3 奈米碳管與生物科學領域的結合……………..………………………8 1-3-1 奈米碳管在生醫組織工程的應用………….……………………8 1-3-2 奈米碳管對細胞與生物體的影響……………………………...10 1-3-3奈米碳管之抗菌活性……………………………………………12 1-4 研究動機………………………………………………………………13 第2章 奈米碳材料的製備……………………………………...…………28 2-1 單壁奈米碳管(SWCNTs)的製備……………………………………..28 2-1-1 單壁奈米碳管合成實驗步驟……………………………...……28 2-1-2 官能基化(Functionalized)單壁奈米碳管之製備………….……29 2-2多壁奈米碳管(MWCNTs)的製備………………………………….….31 2-2-1 多奈米碳管合成實驗步驟………………………………………31 2-2-2 官能基化(Functionalized)多壁奈米碳管之製備………….……32 2-3 奈米碳球粉(Carbon Nanopowder)的製備……………………...…….33 2-3-1 奈米碳球粉之取得…………………………………….………..33 2-3-2 官能基化(Functionalized)奈米碳球粉之製備………………….33 2-4奈米碳材料溶液之製備………………………………………...….34 2-5 原始、官能基化奈米碳材料之形貌與性質分析…………………35 第3章 官能基化奈米碳材料與細菌共同培養之實驗方法………...……43 3-1 實驗動機……………………………………………………………....43 3-2 細菌的培養……………………………………………………………43 3-2-1 菌落的培養與單一菌落的取得……………………………..…..43 3-2-2 過夜菌液之培養………………………………………………...44 3-2-3 Escherichia coli DH5α生長曲線的繪製……………………..….45 3-3 官能基化奈米碳材料對細菌之影響的實驗方法與步驟……………46 3-3-1 培養盤塗佈菌落統計法…………………………………...……46 3-3-2 FE-SEM場發射掃描式電子顯微鏡分析………………………..48 3-3-3 冷光儀偵測試液中ATP濃度之分析….………………………..51 第4章 官能基化奈米碳材料的製備及與細菌共同培養之實驗結果…............61 4-1 奈米碳材料溶液之製備結果……………………………….....………...61 4-2 原始、官能基化奈米碳材料之形貌與性質分析結果………………....61 4-2-1 場發射掃描式電子顯微鏡觀察奈米碳材料之結果………..…......61 4-2-2 拉曼光譜儀觀察奈米碳材料之結果……………………………....63 4-2-3傅利葉轉換紅外線光譜儀觀察奈米碳材料之結果………..……...65 4-3 Escherichia coli DH5α生長曲線的繪製結果……………………..……..66 4-4 標準平板測定法之分析結果………………………………………...…..66 4-5 場發射掃描式電子顯微鏡之分析結果……………………………...…..67 4-6 冷光儀偵測試液中三磷酸腺苷濃度之分析結果……………………….69 第5章 結論………………………………………………..………………..….85 第6章 參考文獻……………………………………………….……………..86 附錄. 官能基化多壁奈米碳管之抑菌能力再探討……………………………92

    [1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, “C60 : Buckminsterfullerence” Nature, 318, 162 (1985).
    [2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991).
    [3] S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993).
    [4] Rice University: The Smalley Group, http:// smalley.rice.edu/, Image Gallery, 1.
    [5] M. R. Falvo, and G. J. Clary, “Bending and bucking of carbon nanotubes under large strain”, Nature, 389, 582 (1997).
    [6] E. W. Wong, P. E. Sheehan, Ch. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science, 227, 1971 (1997).
    [7] J. Hone, M. Whitney, C. Piscoti, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev. B, 59, 2514 (1999).
    [8] Z. Yao, C. L. Kane, and C. Dekker, “High-Field Electrical Transport in Single-Wall Carbon Nanotubes”, Phys. Rev. Lett. 84, 2941 (2000).
    [9] B.Q.Wei, R.Vajtai, and P.M.Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Appl. Phys. Lett. 79, 1172 (2001).
    [10] Kannan Balasubramanian, and Marko Burghard, “Chemically functionalized carbon nanotubes”, Small, 1, 180 (2005).
    [11] Mildred S. Dresseelhaus, Gene Dresseelhaus, and Riichiro Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883 (1995).
    [12] Peter J. F. Harris, “Carbon nanotubes and related structures : new materials for the twenty-first century”, Department of Chemisty, University of Reading.
    [13] Saito Y, Uemura S., “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169 (2000).
    [14] T. Guo, P. Nikolev, A. Thess “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett., 243, 49 (1995).
    [15] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassel, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their emission properties”, Science 283, 512 (1999).
    [16] Pavel Nikolaev, Bronikowski MJ, Bradley RK, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide”, Chemical Physical Letters 313, 91 (1999).
    [17] H. M. Cheng et al., “Large-scale and low-cost synthesis of single walled carbon nanotubes”, Appl. Phys. Lett., 72, 3282, (1998).
    [18] M. Meyyappan, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, “Carbon nanotube growth by PECVD: a review”, Plasma Sources Sci. Technol. 12, 205, (2003).
    [19] Ken S. Rosenthal, and James S. Tan, “Rapid review – Microbiology and Immunology” Elsevier (Singapore) Pte Ltd., 譯者:羅瑋瑜, 合記圖書出版社 (2008).
    [20] Jean-Paul Salvetat, G. Andrew D. Briggs, Jean-Marc Bonard, Revathi R. Bacsa, Andrzej J. Kulik, Thomas Stöckli,1 Nancy A. Burnham, and László Forró, “Elastic and shear moduli of single-walled carbon nanotube ropes”, Physical Review Letters, 82, 944 (1999).
    [21] Ping Chen, Xiaobing Wu, Xuan Sun, Jianyi Lin, Wei Ji, and Kuang Lee Tan, “Electronic structure and optical limiting behavior of carbon nanotubes”, Physical Review Letters, 82, 2548 (1999).
    [22] Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. Mclean, Steve R. Lustig, Raymond E. Richardson, and Nancy G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes”, Nature Materials, 2, 338 – 342 (2003).
    [23] Xiaogang Han, Yulin. Li, and Zhaoxiang Deng, “DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays”, Advanced. Materials, 19, 1518 – 1522 (2007).
    [24] Yianbiao Zhang, Mandakini Kanungo, Alexander J. Ho, Paul Freimuth, Daniel van der Lelie, Michelle Chen, Samuel M. Khamis, Sujit S. Datta, A. T. Charlie Johnson, James A. Misewich, and Stanislaus S. Wong, “Functionalized carbon nanotubes for detecting viral proteins”, Nano Letters, 7, 3086 – 3091 (2007).
    [25] Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L “Carbon Nanotube Substrates Boost Neuronal Electrical Signaling”, Nano Letters, 5, 1107-1110 (2005).
    [26] Tamir Gabay, Eyal Jakobs, Eshel Ben-Jacob, and Yael Hanein, “Engineered self-organization of neural networks using carbon nanotube clusters”, Physica A, 350, 611 – 621 (2005).
    [27] Nadine Wong Shi Kam, Michael O’Connell, Jeffrey A. Wisdom, and Hongjie Dai, “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction” PNAS, Vol. 102, no. 33, 11600 – 11605 (2005).
    [28] Anna A. Shvedova, Vincent Castranova, Elena R. Kisin, Diane Schwegler-Berry, Ashley R. Murray, Vadim Z. Gandelsman, Andrew Maynard, and Paul Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells” Journal of Toxicology and Environmental Health, Part A, 66:1909 (2003).
    [29] Nancy A. Monteiro-Riviere, Robert J. Nemanich, Alfred O. Inman, Yunyu Y. Wang, and Jim E. Riviere, “Multi-walled carbon nanotube interactions with human epidermal keratinocytes” Toxicology Letters, 155, 377 (2005).
    [30] Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB “Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene” Environ. Sci. Technol, 39, 1378 (2005).
    [31] Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A, “Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells” Nano Letters, 6, 1522-1528 (2006).
    [32] De Nicola M, Gattia DM, Bellucci S, De Bellis G, Micciulla F, Pastore R, Tiberia A, Cerella C, D'Alessio M, Antisari MV, Marazzi R, Traversa E, Magrini A, Bergamaschi A, Ghibelli L, “Effect of different carbon nanotubes on cell viability and proliferation” J. Phys. Condens. Matter 19 (2007).
    [33] Chiu-Wing Lam, John T. James, Richard McCluskey, and Robert L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation” Toxicological Sciences, 77, 126 (2004).
    [34] Yang ST, Guo W, Lin Y, Deng XY, Wang HF, Sun HF, Liu YF, Wang X, Wang W, Chen M, Huang YP, Sun YP, “Biodistribution of Pristine Single-Walled Carbon Nanotubes In Vivo” J. Phys. Chem, 111, 17761 (2007).
    [35] Seoktae Kang, Mathieu Pinault, Lisa D. Pfefferle, and Menachem Elimelech, “Single-walled carbon nanotubes exhibit strong antimicrobial activity”, Langmuir, 23, 8670 - 8673 (2007).
    [36] Anna S. Brady-Este´vez, Seoktae Kang, and Menachem Elimelech, “Single-walled carbon nanotube filter for removal of viral and bacterial pathogens”, Small, 4, 481 - 484 (2008).
    [37] Jin-Woo Kim, Evgeny V. Shashkov, Ekaterina I. Galanzha, Nalinikanth Kotagiri, and Vladimir P. Zharov, “Photothermal Antimicrobial Nanotherapy and Nanodiagnostics With Self-Assembling Carbon Nanotube Clusters” Lasers in Surgery and Medicine, 39, 622 (2007).
    [38] 曾士豪, “單壁奈米碳管量產及其光聲響性質之研究”, 國立清華大學材料科
      學工程學系 (2005)
    [39] 李家維、陳家全、楊瑞森, “生物電子顯微鏡”, 國科會精儀中心 (2004).
    [40] 陳陵援、吳慧眼, ”儀器分析”, 三民書局 (2004).
    [41] John Robertson, “Diamond-like amorphous carbon”, Materials Science and
      Engineering Review, 37, 129 – 281 (2002).
    [42] Jean-Christophe Charlier, Peter C. Eklund, Jun Zhu, and Andrea C. Ferrar, “Electron and phonon Properties of graphene : their relationship with carbon nanotubes”, Topics Applied Physics, 11, 673 – 709 (2008).
    [43] Mark A. Hamon, Jian Chen, Hui Hu, Yongsheng Chen, Misha E. Itkis, Apparao M. Rao, Peter C. Eklund, and Robert C. Haddon, “Dissolution of single-walled carbon nanotubes”, Advanced Materials, 11, 834 – 840 (1999).
    [44] Douglas B. Mawhinney, Viktor Naumenko, Anya Kuznetsova, and John T. Yates, “Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K”, Journal of American Chemical Society, 122, 2383 – 2384 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE