簡易檢索 / 詳目顯示

研究生: 呂昱翰
Yu-Han Lyu
論文名稱: 隨機產生k連通圖形
Random Generating k-connected Graphs
指導教授: 唐傳義
Chuan-Yi Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 21
中文關鍵詞: 蒙地卡羅馬可夫鍊隨機演算法
外文關鍵詞: Markov Chain Monte Carlo method, randomized algorithm, rapidly mixing
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 列舉組合物件在組合數學中一直都是重要的研究項目,而我們稱隨機產生組合物件的演算法為取樣。取樣在電腦科學中有很多的應用,像是程式正確性的測試等等,而且數學家也可以利用取樣的結果去驗證一些數學性質。
    我們利用蒙地卡羅馬可夫鍊的方法設計出k 連通圖形的取樣方法,而我們可以證明出此方法可以近似均勻分布的產生k連通圖形,並且我們也證明了這演算法是快速收斂的。


    Enumerating combinatorial objects is an important research topic in combinatorics. Algorithms for random generating combinatorial objects are called sampling. Sampling has many applications in computer science, for example program testing. Mathematicians
    can use sampling to verify combinatorial property.
    We developed a simple algorithm to sample k-connected graphs based on Markov Chain Monte Carlo method. This algorithm generates graphs at approximately uniform distribution, and we prove it is rapidly mixing

    Abstract Preface Acknowledgements Glossary of Notation Table of Contents 1 Introduction 1 1.1 Combinatorial Generation 1.2 Markov Chain Monte Carlo Method 1.3 Previous Work 1.4 Contribution 1.5 Organization 2 Preliminaries 2.1 Graph Theory 2.2 Markov Chain 2.3 Markov Chain Monte Carlo Method 2.4 Mixing-time and Rapidly Mixing 2.5 Techniques for Analyzing Mixing-time 3 Algorithm 4 Mixing Time 5 Future Work Epilogue Appendix A Bibliography

    [1] Be’la Bolloba’s. Random Graphs. Cambridge University Press, second edition, September 2001.
    [2] R. Bubley and M. Dyer. Path coupling: A technique for proving rapid mixing in markov chains. In FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS ’97), page 223, Washington, DC, USA, 1997. IEEE Computer Society.
    [3] M R Jerrum, L G Valiant, and V V Vazirani. Random generation of combinatorial structures from a uniform. Theoretical Computer Science, 43(2-3):169–188, 1986.
    [4] Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple markov-chain algorithms for generating bipartite graphs and tournaments. In SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, pages 193–200, Philadelphia, PA, USA, 1997. Society for Industrial and Applied Mathematics.
    [5] J. H. Kim and V. H. Vu. Generating random regular graphs. Combinatorica, 26(6):683–708, 2006.
    [6] Colin McDiarmid, Angelika Steger, and Dominic J. A. Welsh. Random planar graphs. Journal of Combinatorial Theory, Series B, 93(2):187–205, 2005.
    [7] Guy Melancon and Fabrice Philippe. Generating connected acyclic digraphs uniformly at random. Information Processing Letters, 90(4):209–213, 2004.
    [8] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, January 2005.
    [9] Dana Randall. Mixing. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, page 4, Washington, DC, USA, 2003. IEEE Computer Society.
    [10] Alistair Sinclair. Algorithms for random generation and counting: a Markov chain approach. Springer, February 1993.
    [11] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly mixing markov chains. Information and Computation, 82(1):93–133, 1989.
    [12] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, second edition, May 2000.
    [13] Richard P. Stanley. Combinatorial generation. October 2003.
    [14] Douglas B. West. Introduction to Graph Theory. Prentice Hall, second edition, Auguest 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE