研究生: |
趙淇 Chao, Chi |
---|---|
論文名稱: |
含金屬網毛細結構之平板熱管蒸發熱阻之研究 Evaporation Resistance of Flat Heat Pipe Having Metallic Mesh Wick |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 熱管 、平板熱管 、可視化 、蒸發熱阻 、銅網 |
外文關鍵詞: | heat pipe, flat heat pipe, observation, evaporation resistance, copper mesh |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以可視化的實驗方法探討平板熱管之蒸發熱阻。本研究將利用銅網作為毛細結構,以去離子水做為工作流體,且直接測量熱管內工作流體溫度,並配合觀察熱管內部物理現象,探討蒸發熱阻值與熱傳機制之關聯。實驗工作針對由不同網目大小組合但總厚度固定為0.4mm之毛細蒸發結構進行觀察與量測,結果顯示,在操作的平板熱管中蒸發區均無沸騰發生。推其原因是,厚度薄的燒結銅網毛細結構在低壓環境中蒸發區底板壁面的過熱度不大,未能啟動核沸騰,所以熱傳機制以蒸發為主。毛細極限為影響平板熱管熱負載範圍的重要因素,毛細極限發生前,蒸發熱阻隨著輸入瓦數上升而下降,毛細極限發生後,由於部分乾化發生使得熱傳率降低,導致蒸發熱阻增加。此外,孔隙較小的毛細結構在中高瓦數運作下有比較高的熱傳率且能將高熱傳率的狀況維持一段時間,比較不容易出現局部乾化的現象。
1. M. Mochizuki et al., “The way we were and are going on cooling high power processors in the industries”, The Seventh International Symposium in Transport Phenomena, 4-8 September, 2006, Toyama, Japan.
2. A. Bar-Cohen et al., “Thermal challenges in next generation electronic systems- summary of panel presentations and discussion”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 4, 2002
3. R. Viswanath et al., “Thermal performance challenges from silicon to systems, Intel Technology Journal”, 2000
4. A. Faghri, “Heat pipe science and technology”, Taylor & Francis, 1995
5. C. Li and G.P. Peterson, “Evaporation/boiling in thin capillary wicks(2)-effects of volumetric porosity and mesh size”, ASME J. of Heat Transfer, Vol. 128, pp. 1320-1328, 2006
6. M. Potash and P.C. Wayner, “Evaporation from a two-dimensional extended meniscus”, International J. Heat and Mass Transfer, Vol. 15, pp. 1851-1863, 1972
7. F.W. Holm and S.P. Goplen, “Heat transfer in meniscus thin-film transition region”, ASME J. of Heat Transfer, Vol. 101, pp.543-547, 1979
8. P.C. Stephan and C.A. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat and Mass Transfer, Vol. 35, No.2, pp. 383-391, 1992
9. C. Hohmann and P. Stephan, “Microscal temperature measurement at an evaporation liquid meniscus”, Experimental Thermal and Fluid Science, Vol. 26, pp. 157-162, 2002
10. 潘欽, “沸騰熱傳與雙相流”, 國立編譯館, 俊傑書局
11. S. G. Bankoff, “Ebullition from solid surface in the absence of a pre-existing gaseous phase”, ASME J. of Heat Transfer, Vol. 79, pp. 735, 1957
12. A. F. Mills, “Heat Transfer”, 1992 Richard D. Irwin, Inc. pp. 22.
13. Y. Wang and G.P. Peterson, “Investigation of a novel flat heat pipe”, ASME J. of Heat Transfer, Vol. 127, pp. 165-170, 2005
14. D. Khrustalev and A. Faghri, “Thermal characteristics of conventional and flat miniature axially grooved heat pipes”, ASME J. of Heat Transfer, Vol. 117, pp.1048-1054, 1995
15. L. Lin et al., “High performance miniature heat pipe”, International J. of Heat and Mass Transfer, Vol. 45, pp. 3131-3142, 2002
16. M.A. Hanlon and H.B. Ma, “Evaporation heat transfer in sintered porous media”, ASME J. of Heat Transfer, Vol. 125, pp. 664-652, 2003
17. J.Y. Chang et al., “Thermal performance of vapor chambers under hot spot heating conditions”, Proceedings of IPACK2005, ASME InterPACK’05 July 17-22, San Francisco, California, USA
18. G.P. Peterson et al., “Evaporation/boiling in thin capillary wicks(1)-wick thickness effects”, ASME J. of Heat Transfer, Vol. 128, pp. 1312-1319, 2006
19. G. P. Peterson, “An introduction to heat pipes, modeling, testing, and applications”,
20. 蘇青森, 真空技術, 東華書局, 1999
21. Intel Pentium 4 Processor on 90 nm Process Thermal and Mechanical Design Guidelines, 2004