研究生: |
吳昱葶 Wu, Yu-Ting |
---|---|
論文名稱: |
具推電子取代基的雙分子鈷錯合物之電化學水氧化研究 Electrochemical Water Oxidation Catalyzed by Dinuclear Cobalt Complexes with Electron Donating Substituents |
指導教授: |
王育恒
Wang, Yu-Heng |
口試委員: |
楊自雄
Yang , Tzu-Hsiung 周憲辛 Chou, Hsien-Hsin 朱見和 Chu, Jean-Ho |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 296 |
中文關鍵詞: | 電化學 、均相水氧化 、分子電催化劑 、推電子基 、過電位 、轉換率 、線性自由能關係 |
外文關鍵詞: | electrochemistry, homogeneous water oxidation, molecular electrocatalyst, electro-donating group, overpotential, turnover frequency, linear free energy relationship (LFER |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水分解擁有將水分解為質子和氧氣的巨大潛力,用於能量的儲存和轉換。高效的水氧化催化劑(WOCs)在此過程中扮演著重要角色。然而,稀有的過渡金屬催化劑成本高昂且稀少限制了其可擴展性。為了解決這問題,探索成本效益更高的替代方案,如第一周期過渡金屬,使催化劑進一步的研究將推動能量轉換的發展。本論文的第二章主要探討具有推電子基團取代bisbenzimidazolepyrazolide配位基的雙分子鈷錯合物(1-4)在均相催化的水氧化反應。研究旨在利用電子效應和配位基的非無辜性質來調節催化電位和催化活性。值得注意的是,3帶有非無辜的配位基(-OCH3, H2L3)表現出顯著較低的氧化還原電位,突顯了推電子取代基的影響。動力學研究揭示了錯合物3與錯合物1之間的不同行為,揭示了水氧化催化的複雜性並促使進一步的機理研究。此外,通過建立線性自由能關係(LFER),進一步闡明了這些雙分子鈷錯合物的催化行為。通過修飾非無辜配體,可以有效調節水氧化催化劑的氧化還原電位,降低所需過電位。雖然這些修飾並未提高催化活性,但這項研究在高效水氧化催化劑的設計方面取得了重大進展,凸顯了利用氧化還原非無辜配體來設計分子催化劑,用於各種與能源相關的反應,包括水氧化反應,以提高其在動力學和熱力學方面的催化性能的潛力。整體而言,這項研究有助於理解和開發高效的水氧化催化劑,促進能源轉換的進步,並為可持續能源利用提供有希望的途徑。
Water splitting holds great potential for energy storage and conversion by breaking down water into protons and oxygen. Efficient water oxidation catalysts (WOCs) play a crucial role in this process. While rare transition metal catalysts have shown promise, their high cost and limited availability hinder scalability. To address this challenge, researchers are exploring cost-effective alternatives, such as first-row transition metals. Further investigation of these catalysts can advance energy conversion and contribute to addressing the global energy crisis.
Chapter 2 of this thesis focuses on the investigation of homogeneous 4e−/4H+ water oxidation catalysis and explores analog dinuclear cobalt complexes (1–4) with bisbenzimidazolepyrazolide-type ligands containing electron-donating group (EDG) substituents. The study focuses on harnessing electronic effects and exploiting the non-innocent nature of ligands to modulate catalytic potential and reactivity. Notably, complex 3 with a non-innocent ligand featuring methoxy substituents (H2L3) exhibits a significantly lower redox potential, highlighting the effect of electron-donating substituents. The kinetic studies shed light on the different behavior of complex 3 compared to complex 1, revealing the intricacies of water oxidation catalysis and prompting further mechanistic investigations. Additionally, the establishment of a linear free energy relationship (LFER) further elucidates the catalytic behavior of these dinuclear cobalt complexes. By modifying non-innocent ligands, the oxidation-reduction potential of water oxidation catalysts can be effectively adjusted, reducing the required overpotential. Although the modifications did not enhance catalytic activity, this research represents a significant advancement in the engineering of efficient water oxidation catalysts. Furthermore, it highlights the potential of using redox non-innocent ligands to engineer molecular catalysts for various energy-related reactions, including water oxidation, to enhance their catalytic performance in terms of kinetics and thermodynamics.
Overall, this investigation contributes to the understanding and development of efficient water oxidation catalysts, supporting advancements in energy conversion and offering promising avenues for sustainable energy utilization.
(1) Chow, J.; Kopp, R. J.; Portney, P. R. Energy resources and global development. Science 2003, 302 (5650), 1528-1531.
(2) Gray, H. B. Powering the Planet with Solar Fuel. Nat. Chem. 2009, 1 (1), 7.
(3) Li, Y.; Wang, H.; Priest, C.; Li, S.; Xu, P.; Wu, G. Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Adv. Mater. 2021, 33 (6), e2000381.
(4) Schneider, S. H. The greenhouse effect science and policy. Science 1989, 243, 771-781.
(5) Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32 (6), 912-919.
(6) Østergaard, P. A.; Duic, N.; Noorollahi, Y.; Mikulcic, H.; Kalogirou, S. Sustainable development using renewable energy technology. Renew. Energ. 2020, 146, 2430-2437.
(7) Olabi, A. G.; Abdelkareem, M. A. Renewable energy and climate change. Renew. Sust. Energ. Rev. 2022, 158, 112111.
(8) Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Surinach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43 (22), 7501-7519.
(9) Xuan, M.; Li, J. Photosystem II-based biomimetic assembly for enhanced photosynthesis. Natl. Sci. Rev. 2021, 8 (8), nwab051.
(10) Shevela, D.; Kern, J. F.; Govindjee, G.; Messinger, J. Solar energy conversion by photosystem II: principles and structures. Photosynth. Res. 2023, 156 (3), 279-307.
(11) Zhang, B.; Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48 (7), 2216-2264.
(12) Kondo, M.; Tatewaki, H.; Masaoka, S. Design of molecular water oxidation catalysts with earth-abundant metal ions. Chem. Soc. Rev. 2021, 50 (12), 6790-6831.
(13) Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem. 2009, 48 (21), 10001-10017.
(14) Meyer, T. J. Chemical Approaches to Artificial Photosynthesis. Acc. Chem. Res. 1989, 22 (5), 163–170.
(15) Hu, C.; Chen, X.; Dai, Q.; Wang, M.; Qu, L.; Dai, L. Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy 2017, 41, 367-376.
(16) Concepcion, J. J.; House, R. L.; Papanikolas, J. M.; Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (39), 15560-15564.
(17) Matheu, R.; Garrido-Barros, P.; Gil-Sepulcre, M.; Ertem, M. Z.; Sala, X.; Gimbert-Suriñach, C.; Llobet, A. The development of molecular water oxidation catalysts. Nat. Rev. Chem. 2019, 3 (5), 331-341.
(18) Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351 (6271).
(19) Fukuzumi, S.; Hong, D.; Yamada, Y. Bioinspired Photocatalytic Water Reduction and Oxidation with Earth-Abundant Metal Catalysts. J. Phys. Chem. Lett. 2013, 4 (20), 3458-3467.
(20) Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W. Molecular Catalysts for Water Oxidation. Chem. Rev. 2015, 115 (23), 12974-13005.
(21) Hunter, B. M.; Gray, H. B.; Muller, A. M. Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chem. Rev. 2016, 116 (22), 14120-14136.
(22) Hsu, W. C.; Wang, Y. H. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. ChemSusChem 2022, 15 (5), e202102378.
(23) Bucci, A.; Savini, A.; Rocchigiani, L.; Zuccaccia, C.; Rizzato, S.; Albinati, A.; Llobet, A.; Macchioni, A. Organometallic iridium catalysts based on pyridinecarboxylate ligands for the oxidative splitting of water. Organometallics 2012, 31 (23), 8071-8074.
(24) Panchbhai, G.; Singh, W. M.; Das, B.; Jane, R. T.; Thapper, A. Mononuclear iron complexes with tetraazadentate ligands as water oxidation catalysts. Eur. J. Inorg. Chem. 2016, 2016 (20), 3262-3268.
(25) Costentin, C.; Passard, G.; Savéant, J.-M. Benchmarking of homogeneous electrocatalysts: Overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 2015, 137 (16), 5461-5467.
(26) Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis. J. Am. Chem. Soc. 2012, 134 (27), 11235-11242.
(27) Costentin, C.; Savéant, J. M. Multielectron, multistep molecular catalysis of electrochemical reactions: Benchmarking of homogeneous catalysts. ChemElectroChem 2014, 1 (7), 1226-1236.
(28) Rountree, E. S.; McCarthy, B. D.; Eisenhart, T. T.; Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 2014, 53 (19), 9983-10002.
(29) Appel, A. M.; Helm, M. L. Determining the overpotential for a molecular electrocatalyst. ACS Catal. 2014, 4 (2), 630-633.
(30) Cardenas, A. J. P.; Ginovska, B.; Kumar, N.; Hou, J.; Raugei, S.; Helm, M. L.; Appel, A. M.; Bullock, R. M.; O'Hagan, M. Controlling proton delivery through catalyst structural dynamics. Angew. Chem. Int. Ed. 2016, 128 (43), 13707-13711.
(31) DuBois, D. L. Development of molecular electrocatalysts for energy storage. Inorg. Chem. 2014, 53 (8), 3935-3960.
(32) Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J. Am. Chem. Soc. 2016, 138 (51), 16639-16644.
(33) Pegis, M. L.; McKeown, B. A.; Kumar, N.; Lang, K.; Wasylenko, D. J.; Zhang, X. P.; Raugei, S.; Mayer, J. M. Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions. ACS Cent. Sci. 2016, 2 (11), 850-856.
(34) Wang, Y.-H.; Pegis, M. L.; Mayer, J. M.; Stahl, S. S. Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts. J. Am. Chem. Soc. 2017, 139 (46), 16458-16461.
(35) Wang, Y.-H.; Schneider, P. E.; Goldsmith, Z. K.; Mondal, B.; Hammes-Schiffer, S.; Stahl, S. S. Brønsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 2019, 5 (6), 1024-1034.
(36) Wang, Y.-H.; Mondal, B.; Stahl, S. S. Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking catalyst performance via rate–overpotential correlations. ACS Catal. 2020, 10 (20), 12031-12039.
(37) Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO 2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 2020, 49 (16), 5772-5809.
(38) Lyaskovskyy, V.; de Bruin, B. Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions. ACS Catal. 2012, 2 (2), 270-279.
(39) Singh, B.; Indra, A. Role of redox active and redox non-innocent ligands in water splitting. Inorganica Chim. Acta 2020, 506, 119440.
(40) Sutradhar, M.; Pombeiro, A. J. L.; da Silva, J. A. L. Water oxidation with transition metal catalysts with non-innocent ligands and its mechanisms. Coord. Chem. Rev. 2021, 439, 213911.
(1) Susan W. Gersten, G. J. S., and Thomas J. Meyer. Mayer Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 1982, 104 (14), 4029–4030.
(2) C. Sens, l. R., M. Rodríguez, A. Llobet, T. Parella, and J. Benet-Buchholz. A New Ru Complex Capable of Catalytically Oxidizing Water to Molecular Dioxygen. J. Am. Chem. Soc. 2004, 126 (25), 7798–7799.
(3) Maji, S.; Vigara, L.; Cottone, F.; Bozoglian, F.; Benet-Buchholz, J.; Llobet, A. Ligand geometry directs O-O bond-formation pathway in ruthenium-based water oxidation catalyst. Angew. Chem. Int. Ed. 2012, 51 (24), 5967-5970.
(4) Sala, X.; Romero, I.; Rodriguez, M.; Escriche, L.; Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew Chem Int Ed Engl 2009, 48 (16), 2842-2852.
(5) R. F. Bogucki, G. M., and A. E. Martell. Oxygen complexation by cobaltous chelates of multidentate pyridyl-type ligands. Equilibriums, reactions, and electron structure of the complexes. J. Am. Chem. Soc. 1976, 98 (11), 3202–3205.
(6) Wang, H. Y.; Mijangos, E.; Ott, S.; Thapper, A. Water oxidation catalyzed by a dinuclear cobalt-polypyridine complex. Angew. Chem. Int. Ed. 2014, 53 (52), 14499-14502.
(7) Rigsby, M. L.; Mandal, S.; Nam, W.; Spencer, L. C.; Llobet, A.; Stahl, S. S. Cobalt analogs of Ru-based water oxidation catalysts: overcoming thermodynamic instability and kinetic lability to achieve electrocatalytic O 2 evolution. Chem. Sci. 2012, 3 (10), 3058-3062.
(8) Givaja, G.; Volpe, M.; Edwards, M. A.; Blake, A. J.; Wilson, C.; Schröder, M.; Love, J. B. Dioxygen reduction at dicobalt complexes of a Schiff base calixpyrrole ligand. Angew. Chem. Int. Ed. 2007, 46 (4), 584-586.
(9) Hsu, W. C.; Zeng, W. Q.; Lu, I. C.; Yang, T.; Wang, Y. H. Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential through the Non-Innocent Ligand. ChemSusChem 2022, 15 (21), e202201317.
(10) Lee, K. J.; McCarthy, B. D.; Dempsey, J. L. On decomposition, degradation, and voltammetric deviation: the electrochemist's field guide to identifying precatalyst transformation. Chemical Society Reviews 2019, 48 (11), 2927-2945.
(11) Eisenberg, G. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem., Anal. Ed. 1943, 15 (5), 327-328.
(12) Lee, Y.; Park, G. Y.; Lucas, H. R.; Vajda, P. L.; Kamaraj, K.; Vance, M. A.; Milligan, A. E.; Woertink, J. S.; Siegler, M. A.; Narducci Sarjeant, A. A. Copper (I)/O2 Chemistry with Imidazole Containing Tripodal Tetradentate Ligands Leading to μ-1, 2-Peroxo− Dicopper (II) Species. Inorg. Chem. 2009, 48 (23), 11297-11309.
(13) Zhang, X.; Chen, Q.-F.; Deng, J.; Xu, X.; Zhan, J.; Du, H.-Y.; Yu, Z.; Li, M.; Zhang, M.-T.; Shao, Y. Identifying metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. Journal of the American Chemical Society 2022, 144 (39), 17748-17752.
(1) Chou, J.-L.; Chyn, J.-P.; Urbach, F.; Gervasio, D. Dinuclear copper (II) complexes incorporating a novel pyrazolo-based ligand with S-and N-rich coordination spheres. Polyhedron 2000, 19 (20-21), 2215-2223.
(2) Laine, T. M.; Kärkäs, M. D.; Liao, R.-Z.; Åkermark, T.; Lee, B.-L.; Karlsson, E. A.; Siegbahn, P. E.; Åkermark, B. Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex. ChemComm 2015, 51 (10), 1862-1865.
(3) Schenck, T. G.; Downes, J.; Milne, C.; Mackenzie, P. B.; Boucher, T. G.; Whelan, J.; Bosnich, B. Bimetallic reactivity. Synthesis of bimetallic complexes containing a bis (phosphino) pyrazole ligand. Inorg. Chem. 1985, 24 (15), 2334-2337.
(4) Aran, V. J.; Kumar, M.; Molina, J.; Lamarque, L.; Navarro, P.; García-España, E.; Ramirez, J. A.; Luis, S. V.; Escuder, B. Synthesis and protonation behavior of 26-membered oxaaza and polyaza macrocycles containing two heteroaromatic units of 3, 5-disubstituted pyrazole or 1-benzylpyrazole. A potentiometric and 1H and 13C NMR study. J. Org. Chem. 1999, 64 (17), 6135-6146.
(5) McNab, H. Synthesis of pyrrolo [1, 2-c] imidazol-5-one, pyrrolo [1, 2-a] imidazol-5-one and pyrrolo [1, 2-b] pyrazol-6-one (three isomeric azapyrrolizinones), by pyrolysis of Meldrum's acid derivatives. J. Chem. Soc., Perkin Trans. 1 1987, 653-656.
(6) Stuart, J. G.; Khora, S.; McKenney Jr, J. D.; Castle, R. N. The synthesis of dimethoxy‐and trimethoxy [1] benzothieno [2, 3‐c] quinolines. J. Heterocycl. Chem. 1987, 24 (6), 1589-1594.
(7) Cmheea, S. S.; Langford, S.; Cheung, N. S.; Beart, P. M.; Macfarlane, K. J.; Mulcair, M. Agents and Methods for the Treatment of Disorders Associated with Oxidative Stress. WO Pat. WO2003099762A1, 2003.
(8) Jinkerson, D. L.; Weinschenk III I, J.; Dean, D. W. UV-absorbers for ophthalmic lens materials. United States US Pat. US7803359B1, 2010.
(9) Hogg, R.; Wilkins, R. Exchange studies of certain chelate compounds of the transitional metals. Part VIII. 2, 2′, 2 ″-terpyridine complexes. J. Chem. Soc. 1962, 341-350.
(10) Niemczak, M.; Biedziak, A.; Czerniak, K.; Marcinkowska, K. Preparation and characterization of new ionic liquid forms of 2, 4-DP herbicide. Tetrahedron 2017, 73 (52), 7315-7325.
(11) Inomata, K.; Nakayama, Y.; Kotake, H. Quaternary Ammonium Periodate as a New Oxidizing Agent. Bull. Chem. Soc. Jpn. 1980, 53 (2), 565-566.
(12) Baitalik, S.; Flörke, U.; Nag, K. Mononuclear and Binuclear Ruthenium (II) Complexes Containing 2, 2 ‘-Bipyridine or 1, 10-Phenanthroline and Pyrazole-3, 5-Bis (benzimidazole). Synthesis, Structure, Isomerism, Spectroscopy, and Proton-Coupled Redox Activity. Inorg. Chem. 1999, 38 (14), 3296-3308.
(13) Khan, M.; Ahmad, R.; Rehman, G.; Gul, N.; Shah, S.; Salar, U.; Perveen, S.; Khan, K. M. Synthesis of pyridinyl-benzo [d] imidazole/pyridinyl-benzo [d] thiazole derivatives and their yeast glucose uptake activity in vitro. Lett. Drug Des. Discov. 2019, 16 (9), 984-993.
(14) Hsu, W. C.; Zeng, W. Q.; Lu, I. C.; Yang, T.; Wang, Y. H. Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential through the Non-Innocent Ligand. ChemSusChem 2022, 15 (21), e202201317.
(15) Franco, C.; Olmsted III, J. Photochemical determination of the solubility of oxygen in various media. Talanta 1990, 37 (9), 905-909.
(16) Eisenberg, G. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem., Anal. Ed. 1943, 15 (5), 327-328.
(17) Lee, Y.; Park, G. Y.; Lucas, H. R.; Vajda, P. L.; Kamaraj, K.; Vance, M. A.; Milligan, A. E.; Woertink, J. S.; Siegler, M. A.; Narducci Sarjeant, A. A. Copper (I)/O2 Chemistry with Imidazole Containing Tripodal Tetradentate Ligands Leading to μ-1, 2-Peroxo− Dicopper (II) Species. Inorg. Chem. 2009, 48 (23), 11297-11309.
(18) Roberts, J. A.; Bullock, R. M. Direct determination of equilibrium potentials for hydrogen oxidation/production by open circuit potential measurements in acetonitrile. Inorg. Chem. 2013, 52 (7), 3823-3835.
(1) Perrin, L.; Hudhomme, P. Synthesis, Electrochemical and Optical Absorption Properties of New Perylene‐3, 4: 9, 10‐bis (dicarboximide) and Perylene‐3, 4: 9, 10‐bis (benzimidazole) derivatives. 2011, 5427-5440.
(2) Kong, B.; Zhu, Z.; Li, H.; Hong, Q.; Wang, C.; Ma, Y.; Zheng, W.; Jiang, F.; Zhang, Z.; Ran, T. Discovery of 1-(5-(1H-benzo [d] imidazole-2-yl)-2, 4-dimethyl-1H-pyrrol-3-yl) ethan-1-one derivatives as novel and potent bromodomain and extra-terminal (BET) inhibitors with anticancer efficacy. Eur. J. Med. Chem. 2022, 227, 113953.
(3) Wollenweber, M.; Keese, R.; Stoeckli-Evans, H. Synthesis of Spirocyclic Aminosilanes with Electron Withdrawing Substituents at Nitrogen. Z. fur Naturforsch. - B J. Chem. Sci. 1998, 53 (2), 145-148.
(4) Rombouts, J. A.; Ravensbergen, J.; Frese, R. N.; Kennis, J. T.; Ehlers, A. W.; Slootweg, J. C.; Ruijter, E.; Lammertsma, K.; Orru, R. V. Synthesis and photophysics of a red‐light absorbing supramolecular chromophore system. Chem. Eur. J. 2014, 20 (33), 10285-10291.
(5) Cheeseman, G. 223. Quinoxalines and related compounds. Part VI. Substitution of 2, 3-dihydroxyquinoxaline and its 1, 4-dimethyl derivative. J. Chem. Soc. 1962, 1170-1176.
(6) Kise, K.; Osuka, A. Singly and Doubly Quinoxaline‐Fused BIII Subporphyrins. Chem. Eur. J. 2019, 25 (68), 15493-15497.
(7) Navarro, C. A.; Ma, Y.; Michael, K. H.; Breunig, H. M.; Nutt, S. R.; Williams, T. J. Catalytic, aerobic depolymerization of epoxy thermoset composites. Green Chem. 2021, 23 (17), 6356-6360.
(8) Khan, M.; Ahmad, R.; Rehman, G.; Gul, N.; Shah, S.; Salar, U.; Perveen, S.; Khan, K. M. Synthesis of pyridinyl-benzo [d] imidazole/pyridinyl-benzo [d] thiazole derivatives and their yeast glucose uptake activity in vitro. Lett. Drug Des. Discov. 2019, 16 (9), 984-993.
(9) Mishra, A.; Tasiopoulos, A. J.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. High-nuclearity Ce/Mn and Th/Mn cluster chemistry: Preparation of complexes with [Ce4Mn10O10 (OMe) 6] 18+ and [Th6Mn10O22 (OH) 2] 18+ cores. Inorg. Chem. 2007, 46 (8), 3105-3115.
(10) Rezaeifard, A.; Jafarpour, M.; Farrokhi, A.; Parvin, S.; Feizpour, F. Enhanced aqueous oxidation activity and durability of simple manganese (III) salen complex axially anchored to maghemite nanoparticles. RSC Adv. 2016, 6 (69), 64640-64650.
(11) Bilgi, Y.; Kuş, M.; Artok, L. Palladium-catalysed regio-and stereoselective arylative substitution of γ, δ-epoxy-α, β-unsaturated esters and amides by sodium tetraaryl borates. Org. Biomol. Chem. 2020, 18 (32), 6378-6383.