簡易檢索 / 詳目顯示

研究生: 劉禮榮
Li-Jung Liu
論文名稱: 佈植鐵離子之CuInSe2薄膜的晶體結構、磁性及光學能帶研究
The Study of Crystal Structure, Magnetic Property and Optical Band Structure of Fe Implanted CuInSe2 Thin Films.
指導教授: 李志浩
Chih-Hao Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 149
中文關鍵詞: 太陽能電池銅銦硒離子佈植稀磁性半導體中間能帶材料
外文關鍵詞: solar cell, CuInSe2, Ion implantation, iron, Diluted Magnetic Semiconductor, Intermediate band material
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本實驗利用離子佈植的方式,佈植鐵離子於CuInSe2薄膜中,嘗試將CuInSe2薄膜改質為具有鐵磁性與中間能帶的半導體材料。
    從X光繞射以及X光吸收光譜所得到的結果可知,在最高佈值劑量下,佈植之鐵原子以純鐵相存在於CuInSe2薄膜中,並且具有鐵磁性,經場冷及零場冷量測後發現,其居禮溫度大於300 K,但磁特性應是來自於薄膜中的鐵顆粒。於低佈植劑量下,經過磁特性量測後發現,亦具有室溫鐵磁性,而且鐵原子是以+2價的狀態存在;不同佈植劑量下,其磁特性之變化與造成光學特性變化之自由載子濃度變化趨勢相似;因此我們猜測,低劑量之樣品磁特性來源,可能是源自載子誘發之本質稀磁性半導體的表現。
    在高佈植濃度下所出現的能隙中間的吸收峰,低佈植劑量下卻沒有被觀察到;可能是因為在低佈植劑量下,雜質原子的數量並不足以讓原本的CuInSe2薄膜產生新的中間能帶吸收峰。
    因此,如何有效的在低佈植劑量下產生新的吸收能帶,將會是未來發展的重要課題。


    Abstract
    An iron implanted CuInSe2 semiconductor thin film to process a ferromagnetic property and intermediate band structure by utilizing the ion implantation technique was studied in this work.
    From the measurements of the X-ray diffraction and the X-ray absorption spectra, the status of the implanted iron atoms in high dose implanted CuInSe2 thin films was similar to the pure iron bulk, and the ferromagnetic property was observed. Base on the results of the measurements of zero-field cooled and field cooled, the Curie temperature was above the room temperature (300 K), but the ferromagnetic property might come from the iron clusters in the films. At light dose of the CuInSe2 thin films, the room temperature ferromagnetic property was still exist, and the valence state of the implanted iron atoms was +2. The variation of the magnetic property at different doses was similar to the variations of concentration of the excess free carriers which cause also the optical band shifts. So, we consider that the magnetic property of the light dose implanted thin films should come from the intrinsic carrier mediated property.
    The additional absorption at the middle of the band gap energy was only observed at the high dose implanted thin films. We think that the concentration of the light dose implanted thin film isn’t high enough to create a new absorption band at the middle of band gap.
    How to create a new absorption band at the middle of band gap at light dose implanted thin films will be a very important subject for the future development.

    目錄 中文摘要...................................................I Abstract..................................................II 致謝.....................................................III 目錄......................................................IV 圖目錄...................................................VII 表目錄....................................................XI 第一章 序論..............................................1 1.1 前言..............................................1 1.2 CuInSe2薄膜太陽能電池的發展.......................3 1.3 CuInSe2薄膜特性...................................3 1.4 研究動機..........................................6 第二章 理論背景與文獻回顧................................8 2.1 稀磁性半導體的簡介................................8 2.1.1 何謂稀磁性半導體.............................8 2.1.2 發展稀磁性半導體的動機.......................9 2.1.3 稀磁性半導體的發展歷史與現況................10 2.1.4 稀磁性半導體的理論發展......................12 2.2 中間能帶材料的簡介...............................15 2.2.1 何謂中間能帶材料............................15 2.2.2 發展中間能帶材料的動機......................18 2.2.3 中間能帶材料基本理論........................20 2.2.4 中間能帶材料的能帶特徵與光學特性............26 2.2.5 中間能帶材料的研究近況......................28 2.2.6 中間能帶材料在太陽能電池上的應用............30 2.2.7 中間能帶太陽能電池與其他提升效率之方法比較..44 2.2.7.1 串聯式太陽能電池(Tandem Solar Cell).....45 2.2.7.2 量子井太陽能電池(Quantum Well Solar Cell) .......................................45 2.2.7.3 掺雜磁性元素(中間能帶太陽能電池)........46 第三章 實驗方法與分析技術...............................53 3.1 實驗目的.........................................53 3.2 實驗流程.........................................54 3.3 實驗步驟說明.....................................55 3.3.1 TRIM模擬....................................55 3.3.2 基版的清洗..................................56 3.3.3 CuInSe2薄膜鍍製.............................57 3.3.4 離子佈植製程................................57 3.3.5 退火消除離子佈植所造成的殘留應力............58 3.4 CuInSe2薄膜佈植鐵之分析..........................60 3.4.1 結構與成份分析..............................60 3.4.1.1 X光繞射儀...............................60 3.4.1.2 掃描式電子顯微鏡和X光能量散佈光譜.......61 3.4.1.3 X光吸收光譜.............................62 3.4.2 光學與電特性分析............................65 3.4.2.1 可見光/紅外光譜儀.......................65 3.4.2.2 光激發光譜分析..........................67 3.4.3 磁特性分析..................................69 3.4.3.1 超導量子干涉磁量儀......................69 3.4.3.2 X光磁圓偏振二向性.......................70 第四章 實驗結果與討論...................................72 4.1 結構與成份分析...................................72 4.2 光學特性分析....................................104 4.3 磁特性分析......................................118 第五章 結論............................................137 第六章 未來建議與研究方向..............................140 第七章 參考文獻及附錄..................................141 圖目錄 圖1-1 CuInSe2薄膜黃銅礦結構示意圖..........................4 圖2-1平均場理論所預測之P型半導體居禮溫度值................13 圖2-2平均場理論預測之居禮溫度與載子、錳原子濃度關係.......13 圖2-3 BMP之產生示意圖.....................................14 圖2-4 DMS中的單一BMP與BMP間的交互作用示意圖...............14 圖2-5理論模擬與實驗之居禮溫度隨能隙大小變化之比較.........15 圖2-6中間能帶材料之能帶檢視與光電子躍遷示意圖.............16 圖2-7串聯式III-V族太陽能電池結構圖........................19 圖2-8 Shockley Read Hall recombination示意圖..............23 圖2-9具有單一電子的原子核方程式之位能示意圖...............25 圖2-10在Brillouin zone中不同方向的能帶結構圖(a)Ga32P31Cr(b) Ga31P32Cr ................................................26 圖2-11吸收係數對入射光能量的關係圖........................27 圖2-12不同維度結構所呈現出的能態密度分佈圖................29 圖2-13理想之中間能帶太陽能電池能結構示意圖................31 圖2-14 (a)中間能帶示意圖(b)中間能帶材料相對應的等效電路圖 ................................................33 圖2-15 理論模擬之中間能帶太陽能電池能帶示意圖.............33 圖2-16不同結構太陽能電池之轉換效率與能隙關係圖............37 圖2-17中間能帶太陽能電池與其相對之熱平衡能帶示意圖........39 圖2-18量子點太陽能電池結構示意圖..........................40 圖2-19中間能帶狀態與量子點掺雜狀態之關係..................40 圖2-20中間能帶狀態與量子點掺雜狀態之關係..................41 圖2-21量子點中間能帶太陽能電池結構示意圖..................42 圖2-22有無量子點結構的太陽能電池效率比較..................43 圖2-23 (a)理想之QD-IBSC能帶結構圖, (b)實際之DQ-IBSC能帶結構圖 ................................................43 圖2-24 GaAs以及QD-IBSC量子效應對波長之圖譜................44 圖2-25磁性系統中的電子傳輸示意圖..........................47 圖2-26 不同狀態下的太陽光譜...............................49 圖3-1 實驗流程示意圖......................................54 圖3-2 串級式加速器結構圖..................................58 圖3-3 銫離子濺鍍產生負離子源示意圖........................58 圖3-4 布拉格繞射示意圖....................................60 圖3-5 背向散射示意圖......................................63 圖3-6 穿透吸收光譜分析儀示意圖............................67 圖3-7 He-Cd雷射之PL裝置圖.................................70 圖4-1 沿著黃銅礦結構[112]繞射峰所做的rocking curve........73 圖4-2 CuInSe2標準樣品之繞射環圖譜.........................74 圖4-3不同的初佈植劑量下CuInSe2薄膜之XRD圖譜...............75 圖4-4 退火前後低劑量佈值CuInSe2薄膜之XRD繞射圖譜..........79 圖4-5 高佈植劑量之CuInSe2薄膜之X光繞射圖譜................76 圖4-6 晶格常數a對於不同取代型原子以及不同取代比例的變化圖.76 圖4-7 晶格常數c對於不同取代型原子以及不同取代比例的變化圖.76 圖4-8 [312]平面繞射峰位置隨佈植劑量增加而往高角度偏移.....81 圖4-9 不同佈植劑量下的[312]平面間距變化圖.................81 圖4-10 600 ℃退火後的X光繞射圖譜..........................83 圖4-11 在不同佈植劑量下,退火以及未退火樣品的X光吸收光譜圖 ...................................................83 圖4-12 鐵氧化物標準樣品與1*1016 cm-2鐵掺入退火後的吸收光譜圖 ...................................................84 圖4-13 1*1017 cm-2的高佈植劑量之鐵原子吸收邊緣圖譜........84 圖4-14 500 ℃退火之1*1016 cm-2佈植樣品吸收光譜圖..........91 圖4-15 600 ℃退火之1*1016 cm-2佈植樣品吸收光譜圖..........91 圖4-16 不同佈植劑量下退火前的銅K-edge X光吸收圖譜.........93 圖4-17 不同佈植劑量下退火後的銅K-edge X光吸收圖譜.........94 圖4-18 不同佈植劑量下退火前後的銅K-edge X光吸收圖譜.......94 圖4-19 下同佈植劑量下之銦的X光吸收光譜圖..................95 圖4-20 樣品退火前,傅立葉轉換銅的K-edge EXAFS震盪所得的R- space的圖譜........................................97 圖4-21 樣品退火後,傅立葉轉換銅的K-edge EXAFS震盪所得的R- space的圖譜........................................98 圖4-22 傅立葉轉換銅的K-edge EXAFS震盪所得的退火前後R-space的 圖譜...............................................98 圖4-23 傅立葉轉換銦的K-edge EXAFS震盪所得的R-space的圖譜..99 圖4-24 離子佈植前CuInSe2薄膜的表面形貌...................101 圖4-25 經過2*1016cm-2離子佈植後所得到的表面形貌..........101 圖4-26 2*1016cm-2離子佈植退火後的表面形貌................102 圖4-27 圖4-24 2*1016cm-2離子佈植退火後的表面形貌.........102 圖4-28 初佈植效應對於光學能隙上的影響....................105 圖4-29 下同佈植劑量下,退火樣品的光學能隙藍移現象........107 圖4-30 5*1016cm-2、1*1017cm-2下,所出現的中間能隙吸收....112 圖4-31 TRIM模擬所得之佈植原子濃度縱深分佈圖..............113 圖4-32 計算所得之鐵原子之單位體積濃度分布圖..............113 圖4-33 在未退火及不同佈植劑量下的光激發光譜..............118 圖4-34 2*1016 cm-2離子佈植後(在退火處理前)的磁特性.......120 圖4-35 佈植劑量為1*1017 cm-2的樣品在5 K下的磁滯曲線......122 圖4-36 佈植劑量為1*1017 cm-2的樣品300 K下的磁滯曲線......123 圖4-37 佈植劑量為1*1017 cm-2的樣品磁化量對溫度的關係圖...123 圖4-38 佈植劑量為2*1014 cm-2的樣品5 K下的磁滯曲線........125 圖4-39 佈植劑量為2*1014 cm-2的樣品300 K下的磁滯曲線......126 圖4-40 佈植劑量為2*1014 cm-2的樣品磁化量對溫度的關係圖...126 圖4-41 單一鐵原子所具有的磁矩大小隨佈植劑量的變化........129 圖4-42 多餘自由載子濃度與矯頑場的關係圖..................131 圖4-43 1*1016 cm-2佈植劑量樣品退火溫度對光學與自由載子的關係 ..................................................133 圖4-44 1*1016 cm-2佈植劑量之樣品退火溫度與磁特性的關係圖 ..................................................134 圖4-45 1*1016、5*1016與1*1017 cm-2佈植劑量下之樣品磁特性表 現................................................136 表目錄 表1-1 各種缺陷形成所需的能量及傳導的形式及其能階位置.......5 表2-1 稀磁性半導體的發展史與磁特性........................11 表4-1 [112]繞射峰角度與相對應的平面間距...................80 表4-2 相同佈植劑量之CuInSe2薄膜在不同退火溫度下的結構變化.80 表4-3 不同佈植劑量下,鐵原子的吸收邊緣E0值................83 表4-4 相同佈植劑量下,不同退火溫度鐵原子的吸收邊緣E0值變化 ....................................................91 表4-5 佈植劑量為1*1017cm-2的EDS分析......................103 表4-6 不同佈植劑量下的能隙位移大小以及其對應的自由載子濃度 ...................................................111 表4-7 相同佈植劑量,不同退火溫度下的光學吸收特性.........115 表4-8 不同佈植劑量樣品之能隙變化、多餘自由載子及矯頑 場.................................................129 表4-9 1*1016 cm-2掺雜的樣品在不同退火溫度下的不同光學與磁特 性.................................................131

    [1] R. P. Gale, R. W. McClelland, D. B. Dingle, J. V. Gormle, R. M. Burgess, N. P. Kim, R. A. Mickelsen, B. F. Stanbery, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, 53 (1990)
    [2] Martin A. Green, Keith Emery, David L. King, Yoshihirokawa, Wilhelm Warta, Prog. Photovolt: Res. Appl., 15, 35 (2007)
    [3] H. Ohtsuka, M. Sakamoto, M. Koyama, S. Muramatsu, Y. Yazawa, T. Warabisako, T. Abe, T. Saitoh, Sol. Energy Mater. Sol. Cells, 66, 51 (2001)
    [4] Manuel J. Romero, Chun-Sheng Jiang, Rommel Noufi, Mowafak Al-Jassim, Appl. Phys. Lett., 87, 172106 (2005)
    [5] J. Hedstrom, ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. IEEE, 364 (1993)
    [6] K. Ramanathan, Prog. Photovolt: Res. Appl., 11, 225 (2003)
    [7] A. Shimizu, Thin Solid Films, 361, 193 (2000)
    [8] L. C. Olsen, First WCPEC, p. 194-197 (1994)
    [9] W. Eisele, New cadmium-free buffer layers as heterojunction partners on Cu(In, Ga)(S, Se)2 thin film solar cells, IEEE, 692 (2000)
    [10] F. Abou-Elfotouh, D. J. Dunlavy, T. J. Coutts, Solar Cells, 27, (1989)
    [11] Chu, N. and D. Honeman, Solar cells, 31, 197 (1991)
    [12] A. Ashour, A. A. S. Akl, A. A. Ramadan, K. Abd EL-Hady, Thin Solid Films, 467, 300 (2004)
    [13] Zhao Yuwen, Li Zhongming, Mo Chundong, He Shaoqi, Li Zhiming, Yu Yuan, Chen Zhiyun, Sol. Energy Mater. Sol. Cells, 48, 167 (1997)
    [14] H. Ohno, J. Magn. Magn. Mater., 200, 110 (2000)
    [15] I. Zutic, IBM J. Res. & Dev., 50, 1 (2006)
    [16] Handbook of Magnetic Materials, K. H. J. Buschow, 7, 233
    [17] Masaaki Tanaka, J. Cryst. Growth, 278, 25 (2005)
    [18] T. Dietl, H. Ohno, F. Matsukura, Science, 287, 1019 (2000)
    [19] T. Dietl, H. Ohno, Phys. Rev. B, 63, 195205 (2001)
    [20] A. Kaminski, S. Das. Sarma, Phys. Rev. Lett., 88, 247202 (2002)
    [21] A. Kaminski, S. Das. Sarma, Phys. Rev. B, 68, 235210 (2003)
    [22] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat. Mater., 4, 173 (2005)
    [23] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. Frazier, F. Ren, A. F. Hebard, Y. D. Park, D. P. Norton, W. Tang, M. Stavola, J. M. Zavada, R. G. Wilson, Physica B, 340, 39 (2003)
    [24] Antonio Luque, Antonio Marti, Phys. Rev. Lett., 78, 26 (1997)
    [25] C. Tablero, Solid State Commun., 133, 97 (2005)
    [26] Antonio Luque, Antonio Marti, Physica B, 382, 320 (2006)
    [27] Andrew S. Brown, Marti A. Green, Richard P. Corkish, Physica E, 14, 121 (2002)
    [28] Tatsuya Takamoto, Takaaki Agui, Eiji Ikeda, Hiroshi Kurita, Sol. Energy Mater. Sol. Cells, 66, 511 (2001)
    [29] The Physics of Solar Cells, Jenny Nelson, Imperical College Press (2003)
    [30] Antonio Luque, Antonio Marti, Elisa Antolin, Cesar Tablero, Physica B, 382, 320 (2006)
    [31] C. Tablero, Sol. Energy Mater. Sol. Cells, 90, 203 (2006)
    [32] Yoshihiro Kumazaki, Yasuo Nakai, Noriaki Itoh, Phys. Rev. Lett., 59, 25 (1987)
    [33] P. Wahnon, C. Tablero, Phys. Rev. B, 65, 165115 (2002)
    [34] A. Marti, E. Antolin, C. R. Stanley, C. D. Farmer, N. Lopez, P. Diaz, E. Canovas, P. G. Linares, and A. Luque, Phys. Rev. Lett., 97, 247701 (2006)
    [35] P. Palacios, K. Sanchez, J. C. Conesa, P.Wahnon, Physica Status Solidi., 203, 1395 (2006)
    [36] M.A.Green, Prog. Photovolt: Res. Appl., 9, 137 (2001)
    [37] Willian Shockley, Hans J. Queisser, J. Appl. Phys., 32, 3 (1961)
    [38] P. Wuerfel, International Workshop on Nanostructures in Photovoltaics, Dresden (2001)
    [39] A. S. Brown, M. A. Green, R. P. Corkish, Physica E, 14, 121 (2002)
    [40] A. Luque, A. Martı, Prog. Photov. Res. Appl., 9, 73 (2001)
    [41] Martin A. Green, Adv. Mater., 13, 12 (2001)
    [42] A. Marti, L. Cuadra, A. Luque, NEXT GENERATION PHOTOVOLTAICS: High Efficiency through Full Spectrum Utilization, (Institute of Physics Publishing, Bristol, 2003), p. 140-162.
    [43] A. G. Norman, M. C. Hanna, P. Dippo, D. H. Levi, R. C. Reedy, J. S.Ward and M. M. Al-Jassim, Proc. of the 31st IEEE Photovoltaics Specialists Conference (2005)
    [44] A. Luque, A. Marti, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, A. Mc-Kee, J. Appl. Phys., 96, 903 (2004)
    [45] Keith Barnham, James Connolly, Paul Griffin, Guido Haarpaintner, Jenny Nelson, Ernest Tsui, Alexander Zachariou, Jane Osborne, J. Appl. Phys., 80, 1206 (1996)
    [46] Jean-Marc Raulot, Christophe Domain, Phys. Rev. B, 71, 035203 (2005)
    [47] J. G. Albornoz, S. M. Wasim, C. Ricon, Cryst. Res. Technol., 34, 9 (1999)
    [48] Tooru Tanaka, Akihiro Wakahara, Akira Yoshida, J. Appl. Phys., 87, 7 (2000)
    [49] Tooru Tanaka, Akihiro Wakahara, Akira Yoshida, J. Appl. Phys., 87, 71 (2000)
    [50] J. F. Ziegler, J. P. Biersack, SRIM Version 96.07. IBM-Research Yorktown (1996)
    [51] 清華大學原科中心儀器組網頁
    (http://www.nstdc.nthu.edu.tw/chinese/acclab/main.htm)
    [52] J. Tauc, R. Grigorovici, A. Vancu Phys. Stat. Sol., 15, 627 (1966)
    [53] J. Tauc, A. Menth, D. L. Wood. Phys. Rev. Lett., 25, 749 (1970)
    [54] Jean-Marc Raulot, Christophe Domain, Phys. Rev. B, 71, 035203 (2005)
    [55] Neelkanth G. Dhere, Sol. Energy Mater. Sol. Cells, 90, 2181 (2006)
    [56] Jeoung Ju Lee, Chang Soo Yang, Young Sin Park, Kun Ho Kim, Wha Tek Kim, J. Appl. Phys., 86, 5 (1999)
    [57] Elias Burstein, Phys. Rev., 93, 632 (1954)
    [58] T. S. Moss, Proc. Phys. Soc. London, Sect. B, 67, 775 (1954)
    [59] Junhao Chu, Dingrong Qian, Dingyuan Tnag, Physica Scripta, T14, 37 (1986)
    [60] B. R. Sernlius, K. F. Beggern, Z. C. Jin, I. Hamberg, C. G. Granqvist, Phys. Rev. B, 37, 17 (1988)
    [61] Evan O. Kane, Phys. Rev., 131, 1 (1963)
    [62] D. C. Herbert, D. T. J. Hurle, R. M. Logan, J. Phys. C : Solid State Phys., 8, 3571 (1975)
    [63] Hideaki Ikoma, J. Phys. Soc. Jpn., 27, 514 (1969)
    [64] J. Serre, A. Ghazali, P. Leroux Hugon, Phys. Rev. B, 23, 4 (1981)
    [65] Jeremiah R. Lowney, J. Appl. Phys., 60, 2854 (1986)
    [66] R. E. Dietz, J. J. Hopfield, D. G. Thomas, J. Appl. Phys., 32, 2282 (1961)
    [67] Sang-Moo Park, Tomoaki Ikegami, Kenji Ebihara, Thin Solid Films, 513, 90 (2006)
    [68] Youn-Seon Kang, Lawrence H. Robins, Anthony G. Birdwell, Alexander J. Shapiro, W. Robert Thurber, Mark D. Vaudin, J. Appl. Phys., 98, 093714 (2005)
    [69] G. Masse, J. Appl. Phys., 68, 2206 (1990)
    [70] K. Topper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, D. Brauning, Appl. Phys. Lett., 71, 28 (1997)
    [71] J. Eberhardt, H. Metzner, R. Goldhahn, F. Hudert, U. Reislohner, C. Hulsen, J. Cieslak, Th. Hahn, M. Gossla, A. Dietz, G. Gobsch, W. Witthuhn, Thin Solid Films, 480, 415 (2005)
    [72] E. Rudigier, T. Enzenhofer, R. Scheer, Thin Solid Films, 480, 327 (2005)
    [73] J. Van Gheluwe, J. Versluys, D. Poelman, J. Verschraegen, M. Burgelman, P. Clauws, Thin Solid Films, 511, 304 (2006)
    [74] Ming-Ju Yang, Masafuini, Yamaguchi, Tatsuya Takamoto, Eiji Ikeda, Hiroshi Kurita, Masamichi Ohmori, Sol. Energy Mater. Sol. Cells, 45, 331 (1997)
    [75] R.P. Borges, J.V. Pinto, R.C. da Silva, A.P. Goncalves, M.M. Cruz, M. Godinh, J. Magn. Magn. Mater.,(2007)
    [76] R. Sappey, E. Vincent, H. Hadacek, F. Chaput, J. P. Boilot, D. Zins, Phys. Rev. B, 56, 22 (1997)
    [77] G. Kataby, Yu. Koltypin, A. Ulman, I. Felner, A. Gedanken, Appl. Surf. Sci., 201, 191 (2002)
    [78] R. K. Zheng, Hongwei Gu, Bing Xu, X. X. Zhang, J. Phys.:Condens. Matter, 18, 5905 (2006)
    [79] I. T. Yoon, C. J. Park, T. W. Kang, J. Magn. Magn. Mater., 311, 693 (2007)
    [80] Diandra L. Leslie-Pelecky, Reuben D. Rieke, Chem. Mater., 8, 1770 (1996)
    [81] Kazuhiko Ohmori, Machie Saitou, Guido Eilers, Masaaki Matsui, J. Phys. Soc. Jpn., 75, 034711 (2006)
    [82] Guido Eilers, Masaaki Matsui, J. Phys. Soc. Jpn., 65, 840 (1996)
    [83] Guido Eilers, Masaaki Matsui, J. Phys. Soc. Jpn., 65, 1127 (1996)
    [84] Guido Eilers, Masaaki Matsui, J. Phys. Soc. Jpn., 65, 2227 (1996)
    [85] S. K. Mandal, T. K. Nath, Thin Solid Films, 515, 2535 (2006)
    [86] Hung-Ta Lin, Tsung-Shune Chin, Jhy-Chau Shih, Show-Hau Lin, Tzay-Ming Hong, Rong-Tan Huang, Fu-Rong Chen, Ji-Jung Kai, Appl. Phys. Lett., 85, 621 (2004)
    [87] 碩士論文,中山大學材料所,劉志惠
    [88] D.V. Lang, C.H. Henry, Phys. Rev. Lett., 35, 1525 (1975)
    [89] F. Seitz, Trans. Faraday Soc., 35, 74 (1939)
    [90] M. A. Rudermann, C. Kittel, Phys. Rev., 96, 99 (1954)
    [91] T. Kasuya, Prog. Theor. Phys., 16, 45 (1956)
    [92] K. Yosida, Phys. Rev., 106, 893 (1957)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE