簡易檢索 / 詳目顯示

研究生: 陳冠綸
Chen, Guan Lun
論文名稱: FinFET邏輯閘之佈局以減少寄生電容電阻的影響
Exploring FinFET Cell Layout to Minimize Parasitic Impacts
指導教授: 張彌彰
Chang, Mi Change
口試委員: 連振炘
Lien, Chen Hsin
除永珍
Hsu, Yung Jane
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 80
中文關鍵詞: 鰭式電晶體寄生電阻寄生電容佈局邏輯閘
外文關鍵詞: FinFET, Parasitic resistance, Parasitic capacitance, Layout, Logic gate
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體最小線寬縮小到奈米尺度的今日,場效電晶體的源極和汲極越來越接近,使得閥極沒有辦法完全控制通道開關,導致即使是在閥極接地的情況下也有顯著的漏電流產生。為了解決電晶體的漏電問題,科學家們提出了鰭式電晶體(FinFET)結構來增強通道的控制能力,然而FinFET的三維結構卻帶來了多餘且顯著的寄生電阻電容,這些都會對電路造成很大的影響。為了瞭解寄生電阻電容造成影響的主要因素,我們採用非對稱的FinFET模型去模擬分析。模擬結果顯示寄生電阻與電容會在源極和汲極兩端產生不同程度的影響。藉由這個結果,我們仔細研究了FinFET佈局並提出了兩種方法去減少寄生電阻對電路的影響。一個是把源極和汲極的VIA0移到中間,另一個則是增加兩極VIA0的數量,兩種方式都經過實際下線驗證成功。此外,我們也研究了非對稱FinFET佈局面積與電路效能之間的關係,不過由於佈局規定上的限制,並沒有下線做更進一步驗證與分析。


    As the feature size of the semiconductor technology shrunk to nanometer scale, the distance between source and drain of a MOSFET becomes so short such that the gate lose full control of the channel, and thus there is significant leakage current even when gate is grounded. FinFET technology has been adopted to solve this leakage problem. However, FinFET’s 3D structure incorporates significant parasitic capacitance and resistance and that can have larger impacts on circuit performance. To study the dominating factor of the impacts, asymmetric FinFET transistors have been constructed and simulated extensively. It confirms that parasitic resistance and capacitance contribute differently for the source drain terminals. Using this information, the FinFET gate layout is reviewed and two approaches to reduce the parasitic resistance impacts are proposed. One is move the VIA0 position to the center and the other is to increase the number of VIA0. Both approaches were verified by silicon test chips. Asymmetric FinFET transistor layouts that can trade off performance and area have also been developed. However, due to design rule constraints these layouts have not been verified.

    摘要 I Abstract II 誌謝 III Table of Content V List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Organization 2 Chapter 2 Parasitic Resistance and Capacitance Impacts on FinFET Gates 3 2.1 Simulation Setup 3 2.2 Source and drain resistance 4 2.2.1 DC Analysis 4 2.2.2 Transient Analysis 7 2.2.2.1 Inverter Chain 7 2.2.2.2 ND2 Gate 9 2.2.2.3 Pass and Transmission Gates 14 2.3 Parasitic Capacitance 19 2.3.1 Transient Analysis 19 2.3.1.1 INV 20 2.3.1.2 ND2 Gate 20 2.4 Summary 27 Chapter 3 FinFET Layout and Parasitic RC 28 3.1 FinFET Structures and Layouts 28 3.1.1 FinFET layout 29 3.1.2 Layout constraints 30 3.2 Parasitic Capacitance 31 3.2.1 Larger fingers Layout 32 3.2.1.1 INV 33 3.2.1.2 NAND2 gate 39 3.3 FinFET source /drain parasitic resistor model 43 3.3.1 Impacts of VIA0 location 43 3.3.2 Impacts of VIA0 number 45 3.3.3 Impacts on larger fins structure 46 3.3.4 Current sensitivity of S/D parasitic resistance 47 3.3.5 Impacts on circuit performance 50 3.4 Summary 53 Chapter 4 Layout Modification and Silicon verification 55 4.1 Proposed layout Modification 55 4.1.1 Parasitic capacitance 56 4.2 Test line design 57 4.2.1 Ring oscillator 57 4.2.2 Multiple finger layouts 59 4.3 Silicon measurements 60 4.3.1 Ring oscillator 60 4.3.2 One finger and multiple fingers transistors 64 4.3.2.1 Single transistor 64 4.3.2.1 Inverter 71 4.4 Summary 73 Chapter 5 Conclusions and Future work 75 5.1 Conclusions 75 5.2 Future work 76 Reference 78

    [1] G. E. Moore, "Progress in digital integrated electronics," Proceedings of International Electron Devices Meeting, 1975, pp. 11-13.
    [2] X. Xu, R. Wang, and J. Zhuge, "High-Performance BOI FinFETs Based on Bulk-Silicon Substrate," IEEE Translation on Electron Devices, vol. 55, no. 11, pp. 3246-3250, Nov. 2008.
    [3] C. R. Manoj, Angada B. Sachid, F. Yuan, C.-Y. Chang, and V. R. Rao, "Impact of fringe capacitance on the performance of Nanoscale FinFETs," IEEE Electron Device Letters, vol. 31, no. 1, pp. 83-85, Dec. 2010.
    [4] A. Redolfi, E. Sleeckx, K. Devriendt, D. Shamiryan, T. Vandeweyer, N. Horiguchi, M. Togo, J. M. D. Wouter, M. Jurczak, T. Hoffmann, A. Cockburn, V. Gravey, and D. L. Diehl, "Bulk FinFET fabrication with new approaches for oxide topography control using dry removal techniques," Proceedings of 12th International Conference on Ultimate Integration on Silicon, 2011, pp. 1-3.
    [5] Kelin J. Kuhn, "CMOS scaling for the 22nm node and beyond: Device physics and technology," International Symposium on VLSI Technology, Systems and Applications (VLSI- TSA), 2011, pp. 1-2.

    [6] M. Alioto, "Comparative evaluation of layout Density in 3T, 4T, and MT FinFET standard cells," IEEE Translations on Very Large Scale Integration System, vol. 19, no. 5, pp. 751-762, May 2011.
    [7] P. Schuddinck, "Standard cell level parasitics assessment in 20nm BPL and 14nm BFF," Proceedings of International Electron Devices Meeting, 2012, pp. 25.3.1-25.3.4.
    [8] S.-Y. Wu, "A 16nm FinFET CMOS technology for mobile SoC and computing applications," Proceedings of International Electron Devices Meeting, 2013, pp. 9.1.1-9.1.4.
    [9] M. Rashed, "Innovations in special constructs for standard cell libraries in sub 28nm technologies," Proceedings of International Electron Devices Meeting, 2013, pp. 248-251.
    [10] N. Lu, T. B. Hook, J. B. Johnson, C. Wermer, C. Putnam, and R. A. Wachnik, "Efficient and Accurate Schematic Transistor Model of FinFET Parasitic Elements," IEEE Electron Device Letters, vol. 34, no. 9, pp. 1100-1102, Sept. 2013.
    [11] A. Paul, "Comprehensive study of effective current variability and MOSFET parameter correlations in 14nm multi-Fin SOI FINFETs," Proceedings of International Electron Devices Meeting, 2013, pp. 361-364.
    [12] M.-S. Kim, T. Vandeweyer, E. Altamirano-Sanchez, H. Dekkers, E. Van Besien, and D. Tsvetanova, "Self-aligned double patterning of 1x nm FinFETs; A new device integration through the challenging Geometry," 14th International Conference on Ultimate Integration on Silicon (Ulis), 2013, pp. 102-5.
    [13] P.-H. Su, Y. Li, "Design optimization of 16-nm bulk FinFET technology via geometric programming," International Workshop on Computational Electronics, 2014.
    [14] A. Pandey, "Effect of load capacitance and input transition time on FinFET inverter capacitances," IEEE Translation on Electron Devices, vol. 61, no. 1, pp. 30-36, Jan. 2014.
    [15] T. B. Hook, "Fully depleted devices for designers: FDSOI and FinFETs," Proceedings of IEEE Custom Integrated Circuits Conference, 2012, pp. 18-21.
    [16] F.-H. Meng, P.-Y. Lin, and Y.-L. Chiu, "Effect of three-dimensional current distribution on characterizing parasitic resistance of FinFETs," Japanese Journal of Applied Physics, vol.55, no. 4S, Mar. 2016.
    [17] H.-Y. Lin, "Parasitic Impacts on Sub-20nm FinFET Transistors," master thesis, NTHU, July 2016

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE