研究生: |
黃鵑 Huang, Chuan |
---|---|
論文名稱: |
新型半salen鈷金屬錯合物調控的熱/光引發之聚合反應 Thermal- and Photo-induced Cobalt-Mediated Radical Polymerization with a Novel Half-Salen Type Cobalt(II) Complex |
指導教授: |
彭之皓
Peng, Chi How |
口試委員: |
王潔
Wang, Jane 陳俊太 Chen, Jiun Tai |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 鈷調控自由基聚合反應 、醋酸乙烯酯 、半salen二配位體螯合之鈷金屬錯合物 、光刺激聚合反應 |
外文關鍵詞: | Cobalt-mediated radical polymerization, vinyl acetate, CoII(half-salen*), photo-initiated polymerization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合成新型半salen二配位體螯合之鈷金屬錯合物以進行鈷調控自由基聚合反應 (Cobalt-mediated radical polymerization; CMRP)。實驗分別使用熱引發及光刺激促使自由基生成。在熱引發醋酸乙烯酯聚合中,以降低反應溫度且提高起始劑當量的方式,可以使控制效果增進。在低溫的熱引發聚合中,分子量高於理論分子量,分子量對單體轉換率呈線性增加,PDI值較大 (PDI = 1.62-1.72),顯示調控效果仍有進步空間,因此改進行光刺激醋酸乙烯酯聚合。
研究發現在光刺激醋酸乙烯酯聚合中,當起始劑當量上升,分子量會符合理論分子量線。此外,在實驗中探討光照強度和溫度對光刺激聚合反應的影響,發現在高照光強度下,可使用較低的起始劑當量進行聚合,分子量會符合理論分子量。而使用不同溫度進行聚合反應發現,溫度提高有助於PDI值下降,但分子量會大於理論分子量,推測為在高溫中鈷二價金屬比例上升導致。
The study of CMRP (Cobalt-mediated radical polymerization) has been developed rapidly. Here, we synthesized a half-salen type bidentate ligand to chelate cobalt(II) metal. This novel cobalt complex we called CoII(half-salen*) differed from CoII(salen*) in its structure but same in its composition. The structure of CoII(half-salen*) was similarly tetrahedral while the structure of CoII(salen*) was square planar. Due to CoII(salen*) have been applied in CMRP of vinyl acetate successfully that might indicate CoII(half-salen*) also have potential to mediate radical polymerization of vinyl acetate.
The polymerization was initiated by either heat or light. In thermo-initiation, the control of CoII(half-salen*) could be improved via reducing temperature or increasing the ratio of initiator. At low temperature, the molecular weight was higher than theoretical molecular weight and the PDI value was large (PDI = 1.62-1.72) in CMRP. To improve the control of CoII(half-salen*), the CMRP was carried out under 365 nm irradiation with photo-initiator of TPO.
As the ratio of initiator rose, the molecular weight would fit theoretical molecular weight more closely. However, it occurred chain transfer reaction during polymerization servely with low light intensity and high ratio of initiator in polymerization.
As light intensity was high, the molecular weight fit the theoretical molecular weight better with low ratio of initiator. However, higher light intensity gave higher PDI value. To lower the PDI value, we have tried to change the temperature during the polymerization. The PDI values reduced as we increased temperature, however, the molecular weight deviated from the theoretical molecular weight at the same time.
1. Braunecker, W. A.; Matyjaszewski, K., Prog. Polym. Sci. 2007, 32, 93-146.
2. Cunningham, M. F., Prog. Polym. Sci. 2008, 33, 365-398.
3. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Macromolecules 1993, 26, 2987-2988.
4. Kamigaito, M.; Ando, T.; Sawamoto, M., Chem. Rev. 2001, 101, 3689-3746.
5. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
6. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990.
7. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58, 379-410.
8. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2009, 62, 1402-1472.
9. Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2012, 65, 985-1076.
10. Ouchi, M.; Terashima, T.; Sawamoto, M., Chem. Rev. 2009, 109, 4963-5050.
11. Peng, C.-H.; Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B., Polym. Chem. 2013, 4, 3098–3104.
12. Percec, V.; Barboiu, B., Macromolecules 1995, 28, 7970-7972.
13. Perrier, S.; Takolpuckdee, P., J. Polym. Sci. Pol. Chem. 2005, 43, 5347-5393.
14. Rosen, B. M.; Percec, V., Chem. Rev. 2009, 109, 5069-5119.
15. Wang, J.-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614-5615.
16. Yamago, S.; Iida, K.; Yoshida, J.-I., J. Am. Chem. Soc. 2002, 124, 2874-2875.
17. Gao, H.; Matyjaszewski, K., Prog. Polym. Sci. 2009, 34, 317-350.
18. Chen, H.-Y.; Lahann, J., Langmuir 2010, 27, 34-48.
19. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K., Prog. Polym. Sci. 2012, 37, 18-37.
20. Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K., Chem. Rev. 2012, 112, 3959-4015.
21. Matyjaszewski, K.; Tsarevsky, N. V., Nat. Chem. 2009, 1, 276-288.
22. Matyjaszewski, K., Macromolecules 2012, 45, 4015-4039.
23. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31, 5559-5562.
24. Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101, 3661-3688.
25. Debuigne, A.; Caille, J. R.; Jérôme, R., Angewandte Chemie 2005, 117, 1125-1128.
26. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
27. Tang, W.; Tsarevsky, N. V.; Matyjaszewski, K., J. Am. Chem. Soc. 2006, 128, 1598-1604.
28. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B., Chem. Rev. 2006, 106, 3936-3962.
29. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N. V.; Coote, M. L.; Matyjaszewski, K., J. Am. Chem. Soc. 2008, 130, 10702-10713.
30. Pintauer, T.; Matyjaszewski, K., Chem. Rev. 2008, 37, 1087-1097.
31. Wang, Y.; Matyjaszewski, K., Macromolecules 2010, 43, 4003-4005.
32. Deng, Z.; Guo, J.; Qiu, L.; Yuan, C.; Zhou, Y.; Yan, F., J. Polym. Sci. Pol. Chem. 2013, 51, 664-671.
33. Duquesne, E.; Habimana, J.; Degée, P.; Dubois, P., Macromolecules 2005, 38, 9999-10006.
34. Tang, W.; Matyjaszewski, K., Macromolecules 2006, 39, 4953-4959.
35. Horn, M.; Matyjaszewski, K., Macromolecules 2013, 46, 3350.
36. Jakubowski, W.; Matyjaszewski, K., Macromolecules 2005, 38, 4139-4146.
37. Matyjaszewski, K.; Jakubowski, W.; Min, K.; Tang, W.; Huang, J.; Braunecker, W. A.; Tsarevsky, N. V., Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15309-15314.
38. Zhang, Y.; Wang, Y.; Peng, C.-H.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2011, 45, 78-86.
39. Peng, C.-H.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P., Macromolecules 2013, 46, 3803–3815.
40. Wang, Y.; Zhong, M.; Zhu, W.; Peng, C.-H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K., Macromolecules 2013, 46, 3793–3802.
41. Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K., Macromolecules 2013, 46, 3816–3827.
42. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K., Science 2011, 332, 81-84.
43. Ting, S. R. S.; Davis, T. P.; Zetterlund, P. B., Macromolecules 2011, 44, 4187-4193.
44. Feldermann, A.; Ah Toy, A.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C., Polymer 2005, 46, 8448-8457.
45. Moad, G.; Rizzardo, E.; Thang, S. H., Polymer 2008, 49, 1079-1131.
46. Zhou, N.; Xu, W.; Zhang, Y.; Zhu, J.; Zhu, X., Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 1522-1528.
47. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M., J. Am. Chem. Soc. 1994, 116, 7943-7944.
48. Arvanitopoulos, L. D.; Greuel, M. P.; Harwood, H. J., Polym. Prepr. 1994, 35, 549.
49. Debuigne, A.; Caille, J.-R.; Jérôme, R., Angew. Chem.-Int. Edit. 2005, 117, 1125-1128.
50. Zhao, Y.; Dong, H.; Li, Y.; Fu, X., Chem. Commun. 2012, 48, 3506-3508.
51. Peng, C.-H.; Fryd, M.; Wayland, B. B., Macromolecules 2007, 40, 6814-6819.
52. Hsu, C.-S.; Yang, T.-Y.; Peng, C.-H., Polym. Chem. 2014, 5, 3867-3875.
53. Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C., Nat. Chem. 2014, 6, 179-187.
54. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N., Science 1997, 277, 936-938.
55. Sherwood, R. K.; Kent, C. L.; Patrick, B. O.; McNeil, W. S., Chem. Commun. 2010, 46, 2456-2458.
56. Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H., Polym. Chem. 2013, 4, 3098-3104.
57. Ohtsuki, A.; Goto, A.; Kaji, H., Macromolecules 2013, 46, 96-102.
58. Goto, A.; Zushi, H.; Kwak, Y.; Fukuda, T. In Germanium-and tin-catalyzed living radical polymerizations of styrene, ACS symposium series, Oxford University Press: 2006; pp 595-603.
59. Goto, A.; Suzuki, T.; Ohfuji, H.; Tanishima, M.; Fukuda, T.; Tsujii, Y.; Kaji, H., Macromolecules 2011, 44, 8709-8715.
60. Dadashi‐Silab, S.; Atilla Tasdelen, M.; Yagci, Y., J. Polym. Sci. Pol. Chem. 2014, 52, 2878-2888.
61. Yagci, Y.; Jockusch, S.; Turro, N. J., Macromolecules 2010, 43, 6245-6260.
62. Mosnáček, J.; Ilčíková, M. T., Macromolecules 2012, 45, 5859-5865.
63. Konkolewicz, D.; Schröder, K.; Buback, J.; Bernhard, S.; Matyjaszewski, K., ACS Macro Lett. 2012, 1, 1219-1223.
64. Anastasaki, A.; Nikolaou, V.; Simula, A.; Godfrey, J.; Li, M.; Nurumbetov, G.; Wilson, P.; Haddleton, D. M., Macromolecules 2014, 47, 3852-3859.
65. Anastasaki, A.; Nikolaou, V.; Zhang, Q.; Burns, J.; Samanta, S. R.; Waldron, C.; Haddleton, A. J.; McHale, R.; Fox, D.; Percec, V., J. Am. Chem. Soc. 2014, 136, 1141-1149.
66. Ribelli, T. G.; Konkolewicz, D.; Bernhard, S.; Matyjaszewski, K., J. Am. Chem. Soc. 2014, 136, 13303-13312.
67. Yagci, Y.; Tasdelen, M. A.; Jockusch, S., Polymer 2014, 55, 3468-3474.
68. Taskin, O. S.; Yilmaz, G.; Tasdelen, M. A.; Yagci, Y., Polym. Int. 2014, 63, 902-907.
69. Detrembleur, C.; Versace, D.-L.; Piette, Y.; Hurtgen, M.; Jérôme, C.; Lalevée, J.; Debuigne, A., Polym. Chem. 2012, 3, 1856-1866.
70. Zhao, Y.; Yu, M.; Zhang, S.; Liu, Y.; Fu, X., Macromolecules 2014, 47, 6238-6245.
71. Miao, X.; Zhu, W.; Zhang, Z.; Zhang, W.; Zhu, X.; Zhu, J., Polym. Chem. 2014, 5, 551-557.
72. Shamiri, A.; Chakrabarti, M.; Jahan, S.; Hussain, M.; Kaminsky, W.; Aravind, P.; Yehye, W., Materials 2014, 7, 5069-5108.
73. Makio, H.; Ochiai, T.; Tanaka, H.; Fujita, T., Adv. Synth. Catal. 2010, 352, 1635-1640.
74. Chiang, L.; Allan, L. E.; Alcantara, J.; Wang, M. C.; Storr, T.; Shaver, M. P., Dalton Trans. 2014, 43, 4295-4304.