簡易檢索 / 詳目顯示

研究生: 李冠藝
Lee, Kuan Yi
論文名稱: 微型寬波段近紅外光源製程與改善
Fabrication and Improvement of Micro Broadband Near-Infrared Light Source
指導教授: 吳孟奇
Wu, Meng Chyi
口試委員: 謝明勳
黃雍勛
何充隆
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 近紅外光微燈絲光譜儀壽命開閉速度
外文關鍵詞: Near-Infrared Light, Filament, Spectrometer, Lifetime, Reaction rate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎢絲燈泡(白熾燈泡)在日常照明的應用逐漸被發光二極體所取代,原因在於其可見光波段之發光效率非常低,鎢絲燈泡主要的發光波段集中在近紅外光(900~2500奈米),本研究利用鎢絲燈泡此一特性,搭配微電子工程技術,製作微型化鎢絲燈,作為進紅外光光譜儀之光源,並加以改良。
    本研究方向採用濺鍍方式將鎢及數種高熔點金屬沉積於矽基板上,再經由後續製程,包含蒸鍍電極、沉積絕緣層、乾蝕刻以將鎢懸浮於基板……等製程,達到在供應穩定電壓於微燈絲時,微燈絲元件能夠有良好絕緣及絕熱特性,以增加其產生熱的效率,進而增進發光強度。然而,在舊製程中,微燈絲在發光時因高熱而產生強烈蜷曲,若蜷曲程度使得微燈絲其中兩點接觸,發生短路,且因短路產生極高溫度,導致微燈絲部分斷裂,而無法繼續使用。本實驗採用在製程中加入幾種不同方式,包含沉積高熔點氧化層、高溫熱退火處理、電漿轟擊……等,以達成在微燈絲聚熱發光時,不容易發生蜷曲狀況之目的,避免短路或斷路發生,進而延長微燈絲的使用壽命。
    最後,再經由光譜儀與低溫真空探針座系統,量測並探討不同材料、不同厚度及不同製程條件下的微燈絲,其發光強度、電光轉換效率、壽命與反應時間之間的關係。


    The traditional incandescent light bulb is gradually replaced by the light emitted diode, due to its extremely low power efficiency in the visible wave band compared to the light emitted diode. On the other hand, the main luminous band of the traditional incandescent light bulb is located in the near-infrared region (900~3000nm). By using characteristic mentioned above, we manufacture the micro filament as the light source of the near infrared spectroscopy and improve it through microelectronic engineering technology.
    In this research, we deposit Tungsten and a few high-melting materials onto the Silicon substrate as the light-emitting layer by RF-sputtering. With process followed such as the thermal evaporation of pad, deposition of oxide layer and filament suspension through dry-etching, the filament can behave high thermal isolation and high electrical isolation while applying sTable voltage, which improves the efficiency of gathering heat so that increases its light intensity.
    However, there is a serious problem in the original process : Curl. The filament mightily curls due to high temperature when it glows. If the filament curls hard enough to make it contact with itself, it will reach short. Furthermore, the extremely high temperature in the short loop causes it to burn apart immediately. In our new experiment, we use some different method to solve this problem, including adding the photonic crystal structure, deposition of high-melting oxide layer, high-temperature thermal annealing process and plasma bombardment. With methods mentioned above, we can avoid the short and open circuit situation while applying the voltage to extend the filament’s service lifetime.

    中文摘要 ...I Abstract II Acknowledgements…………………………………………………………………..IV Content V List of Figure VI List of Table VIII Chapter 1 Introduction 1 1-1 Introduction of Near Infrared Spectroscopy 1 1-2 Motivation 4 Chapter 2 Theoretical Basic 9 2-1 Black Body Radiation 9 2-2 Production Principle of Commercial Available Bulb……...……………18 2-3 Calibration of the Spectrometer System through Standard Light Source …………………………………………………………………………..20 Chapter 3 Experimental Process 24 3-1 Experimental Design 24 3-2 Design of Mask 26 3-2-1 Single Filament Process Mask 27 3-2-2 Filament Array Process Mask 30 3-3 Fabrication Process of Micro-filament 34 Chapter 4 Experimental Measurement Results 43 4-1 Fabrication Process of Metallic Filament 43 4-1-1 The Deposition of Light Emitting Film 43 4-1-2 The Improment of Characteristics of Light Emitting Thin Film 45 4-1-3 The Deposition of Upper Isolation Layer 50 4-2 Suspension Process for Micro-filament 51 4-3 The Measurement for Micro-Filament 54 4-3-1 Electrical Characteristics of Tungsten Filament 55 4-3-2 Optical Characteristics of Filament 58 4-3-3 Lifetime of Filament 63 4-3-4 Latency of Filament and Commercially Available Light Bulbs 68 Chapter 5 Conclusion 71 Reference 73

    [1] Schulz O, Muller G, Lloyd M and Ferber A, “Impact of environmental parameters on the emission intensity of micromachined infrared sources,” Sensors Actuators A 121 172–80, 2005
    [2] D. O. Carvalho, M. N. P. Carreño, G. P. Rehder, M. I. Alayo, “Integrated incandescent microlamp coupled to SiOxNy waveguide,” Proc. SPIE 7208, MOEMS and Miniaturized Systems VIII, February 18, 2009
    [3] Kishi N and Hara H, “Lifetime evaluation of self-modulated MEMS infrared light source made of single crystalline silicon,” SICE Ann. Conf. pp 2451–4 , 2007
    [4] Meg L. Tuma, Kevin King, H. Lynn Kim, Richard Hansler, Eric W. Jones and Thomas George, “MEMS Incandescent Light Source,” Proc. SPIE 4134, Photonics for Space Environments VII, 151, October 26, 2000
    [5] W.E. Forsythe, E. Adams, “Radiating Characteristics of Tungsten and Tungsten Lamps,” J. Opt. Soc. Am., 35, pp. 108-113, 1945.
    [6] Juliana Tu, Dwight Howard, Scott D. Collins, and Rosemary L. Smith, “Micromachined, silicon filament light source for spectrophotometric microsystems,” Vol. 42, Issue 13, pp. 2388-2397, 2003
    [7] John Coates, “New Miniaturized Spectral Measurement Platforms Covering the Visible to the Mid-IR,” CPAC NeSSI Workshop, November 2010
    [8] C. H. Mastrangelo and R. S. Muller, ” Vacuum-sealed silicon micromachined incandescent light source,” Electron Devices Meeting, 1989. IEDM '89. Technical Digest., International, 1989
    [9] John J. Brehm and William J. Mullins, “Introduction to the Structure of Matter: A Course in Modern Physics,” pp. 960. ISBN 0-471-60531-X. Wiley-VCH , January 1989.
    [10] G. B. Rybicki and A. P. Lightman, “Radiative Processes in Astrophysics,” New York: John Wiley & Sons, 1979
    [15] Hung, Kun-Rong, “Design and Fabrication of Micro Broadband Near-Infrared Light Source,” nthu, 2015
    [16] Liu, Yu-Chun, “Design and Fabrication of Near-Infrared Broadband Micro-Light Source,” nthu, 2014

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE