研究生: |
戈凱揚 Villalobos Gorday, Kaiser Alejandro |
---|---|
論文名稱: |
微流道應用於血管再生之研究 The Study on Microchannels for Vasculature Regeneration |
指導教授: |
王潔
Wang, Jane |
口試委員: |
謝明佑
鄭逸琳 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 微流道 、Murray定律 、人類臍帶内皮細胞 、組織工程 、PGSA |
外文關鍵詞: | Microfluidic devices, Murray’s law, HUVEC, Tissue engineering, PGSA |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
器官再生被視為在組織工程中最具野心的挑戰之一,各種不同細胞錯綜複雜的三維排列,以及缺乏既有血管易導致組織壞死的特性,使其大大受限於臨床上的應用。因此,本研究致力於將Murray定律應用在建立帶有分枝狀設計之生物可分解微流道裝置,以冀能進一步用於血管之模擬。
在細胞實驗中,就材料的選擇而言,PGSA之丙烯酸化程度達到0.69或以上時,具有適於細胞外間質蛋白質貼附的接觸角,且呈現較高的細胞生長速率,此二特性被認為有助於細胞培養的使用;細胞外間質蛋白質的篩選中,混合纖連蛋白、第一型膠原蛋白與明膠的組合最利於細胞貼附,因此在後續的細胞培養中被選擇作為材料表面的塗層。不論是以相位差顯微鏡或是掃描式電子顯微鏡觀察,細胞都呈現高密度以及健康的型態。在建立微流道裝置方面,使用了電腦輔助設計和軟體來模擬應用Murray定律下,擁有最佳流體力學之情形,包含均勻的剪力分布與流動中最小的擾動。
使用DLP基層製造技術設計的微流道系統被證實有極高的應用性及快速成形特性,應用在培養細胞時,人臍靜脈內皮細胞大量出現在微流道的入口及出口處,並呈現健康的型態;以PGSA製造的微流道裝置用於培養內皮細胞時的良好結果,證實其對設計及製造具有網狀血管結構的器官助益良多。
關鍵字:微流道裝置、Murray定律、人臍靜脈內皮細胞、組織工程、PGSA
Solid organ regeneration is one of the most ambitions challenges in tissue engineering. The complex three-dimensional arrange of different kinds of cells and lack of preexisting vasculature leads to premature necrosis and limits its application in clinical uses. In this project, biodegradable microfluidic devices with bifurcating channels based on Murray’s law were fabricated.
PGSA DA:0.69 and higher showed preferable characteristics for cell seeding, with a suitable contact angle for ECM protein adhesion and high cell proliferation rate. A triple coating of fibronectin, type I collagen, and gelatin exhibited the highest cell adhesion rate and was selected as the coating recipe for subsequent cell seedings. Observations under phase contrast microscope and scanning electron microscope showed cells with healthy morphology and high cell density. Computer-assisted design and simulation software was applied for the design and simulation of microchannels. Designs based on Murray’s law exhibited superior fluid dynamics, with uniform shear stress distribution and minor fluctuations in flow speed.
DLP-AM fabricated microfluidic devices were robust with no signs of obstruction and the fabrication method proven to be practical for fast and precise prototyping. HUVEC seeded on microchannels showed healthy morphology and high cell number at the entrance and exit of the scaffold. Endothelial cell seeding in PGSA microfluidic devices was proven feasible and may contribute to the fabrication of solid organs with an embedded vascular network in the future.
Keywords: Microfluidic devices, Murray’s law, HUVEC, Tissue engineering, PGSA
1. Lim, D.; Kamotani, Y.; Cho, B.; Mazumder, J.; Takayama, S., Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 2003, 3 (4), 318-23.
2. Barber, R. W.; Emerson, D. R., Biomimetic design of artificial micro-vasculatures for tissue engineering. Altern Lab Anim 2010, 38 Suppl 1, 67-79.
3. Engineering, M. I. o. T.-B. Massachusetts Institute of Technology Biological Engineering. https://be.mit.edu/research-areas/tissue-engineering.
4. Langer, R.; Vacanti, J. P., Tissue engineering. Science 1993, 260 (5110), 920-6.
5. UNOS UNOS. https://www.unos.org/data/.
6. Merriam-Webster Dictionary Online. 2017.
7. Reference. 2017.
8. Horst, M.; Madduri, S.; Gobet, R.; Sulser, T.; Hall, H.; Eberli, D., Scaffold Characteristics for Functional Hollow Organ Regeneration. Materials 2010, 3 (1), 241-263.
9. Medical Dictionary. 2017.
10. Basu, J.; Ludlow, J. W., Tissue Engineering of Tubular and Solid Organs: An Industry Perspective, Advances in Regenerative Medicine. 2011.
11. Rouchi, A. H.; Mahdavi-Mazdeh, M., Regenerative Medicine in Organ and Tissue Transplantation: Shortly and Practically Achievable. International Journal of Organ Transplantation Medicine 2015, 6 (3), 93-98.
12. Vize, P. D.; Woof, A. S., The Kidney: From Normal Development to Congenital Disease. Academic Press: 2003.
13. Basu, J.; Genheimer, C.; O'Reilly, D. D.; Sangha, N.; Guthrie, K.; Bertram, T. A.; Ludlow, J. W.; Jain, D., Distribution and analysis of stem and progenitor cell populations in large mammal and human kidneys. Faseb Journal 2010, 24, lb35.
14. Osiris Therapeutics, I., Osiris Therapeutics Reports Second Quarter 2012 Financial Results. 2012.
15. Liu, Z.; Yang, D.; Xie, P.; Ren, G.; Sun, G.; Zeng, X.; Sun, X., MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem 2012, 29 (5-6), 851-62.
16. Kumar, S.; Ponnazhagan, S., Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone 2012, 50 (4), 1012-8.
17. Howard, D.; Buttery, L. D.; Shakesheff, K. M.; Roberts, S. J., Tissue engineering: strategies, stem cells and scaffolds. J Anat 2008, 213 (1), 66-72.
18. O'Brien, F., Biomaterials & scaffolds for tissue engineering. Materials Today 2011, 14 (3), 88-95.
19. Velasco, M. A.; Narvaez-Tovar, C. A.; Garzon-Alvarado, D. A., Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int 2015, 2015 (2015), 729076.
20. Babensee, J. E.; Anderson, J. M.; McIntire, L. V.; Mikos, A. G., Host response to tissue engineered devices. Advanced Drug Delivery Reviews 1998, 33 (1-2), 111-139.
21. Brown, B. N.; Valentin, J. E.; Stewart-Akers, A. M.; McCabe, G. P.; Badylak, S. F., Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009, 30 (8), 1482-1491.
22. Lyons, F. G.; Al-Munajjed, A. A.; Kieran, S. M.; Toner, M. E.; Murphy, C. M.; Duffy, G. P.; O'Brien, F. J., The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials 2010, 31 (35), 9232-43.
23. Phelps, E. A.; Garcia, A. J., Update on therapeutic vascularization strategies. Regen Med 2009, 4 (1), 65-80.
24. Ko, H. C.; Milthorpe, B. K.; McFarland, C. D., Engineering thick tissues--the vascularisation problem. Eur Cell Mater 2007, 14 (1), 1-18; discussion 18-9.
25. Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F., Synthesis and Characterization of a Model Extracellular-Matrix That Induces Partial Regeneration of Adult Mammalian Skin. Proceedings of the National Academy of Sciences of the United States of America 1989, 86 (3), 933-937.
26. O'Brien, F. J.; Harley, B. A.; Yannas, I. V.; Gibson, L. J., The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005, 26 (4), 433-41.
27. Sun, W.; Starly, B.; Nam, J.; Darling, A., Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Design 2005, 37 (11), 1097-1114.
28. Hench, L. L., Bioceramics. Journal of the American Ceramic Society 1998, 81 (7), 1705-1728.
29. Ambrosio, A. M.; Sahota, J. S.; Khan, Y.; Laurencin, C. T., A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res 2001, 58 (3), 295-301.
30. Wang, M., Developing bioactive composite materials for tissue replacement. Biomaterials 2003, 24 (13), 2133-51.
31. Badylak, S. F., Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 2004, 12 (3-4), 367-77.
32. Biology-Online, Types of Transplants. 2009.
33. Vang, P.; Day, D. Advantages and Disadvantages between Allograft versus Autograft in Anterior Cruciate Ligament Replacement 2017. http://soar.wichita.edu/bitstream/handle/10057/811/grasp0638.pdf?sequence=1%3E.
34. Pan, Z.; Ding, J., Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012, 2 (3), 366-77.
35. Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D., Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol Mater Eng 2013, 298 (5), 504-520.
36. Li, X.; Xu, S. L.; He, P. N.; Liu, Y. X., In Vitro Recapitulation of Functional Microvessels for the Study of Endothelial Shear Response, Nitric Oxide and [Ca2+](i). Plos One 2015, 10 (5).
37. Hubell, J., Biomaterials in tissue engineering. Biotechnology 1995, 13, 565-576.
38. Thomson, R. C.; Wake, M. C.; Yaszemski, M. J.; Mikos, A. G., Biodegradable polymer scaffolds to regenerate organs. Biopolymers Ii 1995, 122, 245-274.
39. Yazemski, M.; Payne, R.; WC Hayes, R. L.; Mikos, A., Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996, 17, 175-185.
40. Wong, W.; Mooney, D., Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Synthetic Biodegradable Polymer Scaffolds. Burkhäuser: Boston, 1997.
41. Shalaby, S., Bioabsorbable Polymers. In: Encyclopedia of Pharmceutical Technology. 1988; Vol. 1.
42. Holland; Tighe, Biodegradable polymers. In: Advances in Pharmaceutical Science. Academic Press: London, 1992; Vol. 6.
43. Hayashi, T., Biodegradable polymers for biomedical applications. Progress in Polymer Science 1994, 19, 663-702.
44. Kohn, J.; Langer, R., Bioresorbable and bioerodible materials. In: An Introduction to Materials in Medicine. Academic Press: San Diego, 1997.
45. Ashammakhi, N.; Rokkanen, P., Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 1997, 18 (1), 3-9.
46. Liu, H. L.; Liu, S. J.; Xiao, Z. L.; Chen, Q. Y.; Yang, D. W., Excess molar enthalpies of binary mixtures for (tributyl phosphate plus methanol/ethanol) at 298.15 K. Journal of Thermal Analysis and Calorimetry 2006, 85 (3), 541-544.
47. Yoo, J. J.; Meng, J.; Oberpenning, F.; Atala, A., Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 1998, 51 (2), 221-225.
48. Oberpenning, F.; Meng, J.; Yoo, J. J.; Atala, A., De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 1999, 17 (2), 149-55.
49. Kropp, B. P.; Rippy, M. K.; Badylak, S. F.; Adams, M. C.; Keating, M. A.; Rink, R. C.; Thor, K. B., Regenerative urinary bladder augmentation using small intestinal submucosa: Urodynamic and histopathologic assessment in long-term canine bladder augmentations. Journal of Urology 1996, 155 (6), 2098-2104.
50. Olsen, L.; Bowald, S.; Busch, C.; Carlsten, J.; Eriksson, I., Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol 1992, 26 (4), 323-6.
51. Kropp, B. P.; Ludlow, J. K.; Spicer, D.; Rippy, M. K.; Badylak, S. F.; Adams, M. C.; Keating, M. A.; Rink, R. C.; Birhle, R.; Thor, K. B., Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998, 52 (1), 138-142.
52. Urita, Y.; Komuro, H.; Chen, G.; Shinya, M.; Kaneko, S.; Kaneko, M.; Ushida, T., Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr Surg Int 2007, 23 (1), 21-6.
53. Ansalon, Experimental evaluation of Surgisis as scaffold for neointestine regeneration in a rat model. Transplantation Proceedings 2006, 38, 1844-1848.
54. De Filippo, R. E.; Yoo, J. J.; Atala, A., Engineering of vaginal tissue in vivo. Tissue Eng 2003, 9 (2), 301-6.
55. Amiel, G. E.; Komura, M.; Shapira, O.; Yoo, J. J.; Yazdani, S.; Berry, J.; Kaushal, S.; Bischoff, J.; Atala, A.; Soker, S., Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng 2006, 12 (8), 2355-65.
56. Lee, J. Y.; Choo, J. E.; Choi, Y. S.; Lee, K. Y.; Min, D. S.; Pi, S. H.; Seol, Y. J.; Lee, S. J.; Jo, I. H.; Chung, C. P.; Park, Y. J., Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. J Biomed Mater Res A 2007, 83 (4), 970-9.
57. Chemicals, E. C. f. E. a. T. o., Linear Polydimethylsiloxanes CAS No. 63148-62-9 (Second Edition). Joint Assessment of Commodity Chemicals: Brussels, 2011.
58. MIT, M. I. o. T.-. Material Property Database. http://www.mit.edu/~6.777/matprops/pdms.htm.
59. Handbook, P. D., Polymer Data Handbook. Oxford University Press: 1999.
60. Colas, A.; Curtis, J., Silicone Biomaterials: History and Chemistry. In: Biomaterial Science: An Introduction to Materials in Medicine. Elsevier Academic Press: San Diego, 2004.
61. Whitesides, G. M.; Stroock, A. D., Flexible methods for microfluidics. Physics Today 2001, 54 (6), 42-48.
62. Sollier, E.; Murray, C.; Maoddi, P.; Di Carlo, D., Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 2011, 11 (22), 3752-65.
63. Sia, S. K.; Whitesides, G. M., Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24 (21), 3563-76.
64. Fujii, T., PDMS-based microfluidic devices for biomedical applications. Microelectronic Engineering 2002, 61-2, 907-914.
65. Wu, J.; Cao, W.; Wen, W.; Chang, D. C.; Sheng, P., Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor. Biomicrofluidics 2009, 3 (1), 12005.
66. Trahan, D. W.; Doyle, P. S., Simulation of electrophoretic stretching of DNA in a microcontraction using an obstacle array for conformational preconditioning. Biomicrofluidics 2009, 3 (1), 012803.
67. Gong, X.; Wen, W., Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. Biomicrofluidics 2009, 3 (1), 12007.
68. Srivastava, Y.; Marquez, M.; Thorsen, T., Microfluidic electrospinning of biphasic nanofibers with Janus morphology. Biomicrofluidics 2009, 3 (1), 12801.
69. Das, S. K.; Chung, S.; Zervantonakis, I.; Atnafu, J.; Kamm, R. D., A microfluidic platform for studying the effects of small temperature gradients in an incubator environment. Biomicrofluidics 2008, 2 (3), 34106.
70. Ebina, W.; Rowat, A. C.; Weitz, D. A., Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition. Biomicrofluidics 2009, 3 (3), 34104.
71. Jessamine; Gitlin; Stroock; Whitesides, Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002, 23 (20), 3461-3473.
72. Paguirigan, A. L.; Beebe, D. J., From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures. Integr Biol (Camb) 2009, 1 (2), 182-95.
73. Kaali, P., Degradation of biomedical polydimethylsiloxanes during exposure to in vivo biofilm environment monitored by FE-SEM, ATR-FTIR, and MALDI-TOF MS. Journal of Applied Polymer Science 2009, 115 (2), 802-10.
74. Sawhney, Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(a-hydroxy acid) Diacrylate Macromers. Macromolecules 1993, 26, 581-587.
75. Lu, Y.; Mapili, G.; Suhali, G.; Chen, S.; Roy, K., A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 2006, 77 (2), 396-405.
76. Choi, D.; Lee, W.; Park, J.; Koh, W., Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization. Biomed Mater Eng 2008, 18 (6), 345-56.
77. Chan, V.; Zorlutuna, P.; Jeong, J. H.; Kong, H.; Bashir, R., Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 2010, 10 (16), 2062-70.
78. Zellander, A.; Zhao, C.; Kotecha, M.; Gemeinhart, R.; Wardlow, M.; Abiade, J.; Cho, M., Characterization of pore structure in biologically functional poly(2-hydroxyethyl methacrylate)-poly(ethylene glycol) diacrylate (PHEMA-PEGDA). PLoS One 2014, 9 (5), e96709.
79. Larsen, E. K.; Mikkelsen, M. B.; Larsen, N. B., Protein and cell patterning in closed polymer channels by photoimmobilizing proteins on photografted poly(ethylene glycol) diacrylate. Biomicrofluidics 2014, 8 (6), 064127.
80. Sigma-Aldrich, Degradable Poly(ethylene glycol) Hydrogels for 2D and 3D Cell Culture. 2011.
81. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nat Biotechnol 2002, 20 (6), 602-6.
82. Chen, Q. Z.; Liang, S. L.; Thouas, G. A., Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter 2011, 7 (14), 6484-6492.
83. Li, X.; Hong, A. T.; Naskar, N.; Chung, H. J., Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties. Biomacromolecules 2015, 16 (5), 1525-33.
84. Wu, Y.; Shi, R.; Chen, D. F.; Zhang, L. Q.; Tian, W., Nanosilica Filled Poly(glycerol-sebacate-citrate) Elastomers with Improved Mechanical Properties, Adjustable Degradability, and Better Biocompatibility. Journal of Applied Polymer Science 2012, 123 (3), 1612-1620.
85. Gao, J.; Crapo, P. M.; Wang, Y., Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 2006, 12 (4), 917-25.
86. Motlagh, D.; Yang, J.; Lui, K. Y.; Webb, A. R.; Ameer, G. A., Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 2006, 27 (24), 4315-24.
87. Pritchard, C. D.; Arner, K. M.; Neal, R. A.; Neeley, W. L.; Bojo, P.; Bachelder, E.; Holz, J.; Watson, N.; Botchwey, E. A.; Langer, R. S.; Ghosh, F. K., The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 2010, 31 (8), 2153-2162.
88. Salehi, S.; Bahners, T.; Gutmann, J. S.; Gao, S. L.; Mader, E.; Fuchsluger, T. A., Characterization of structural, mechanical and nano-mechanical properties of electrospun PGS/PCL fibers. Rsc Advances 2014, 4 (33), 16951-16957.
89. Chen, Q. Z.; Ishii, H.; Thouas, G. A.; Lyon, A. R.; Wright, J. S.; Blaker, J. J.; Chrzanowski, W.; Boccaccini, A. R.; Ali, N. N.; Knowles, J. C.; Harding, S. E., An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 2010, 31 (14), 3885-93.
90. Chen, Q. Z.; Bismarck, A.; Hansen, U.; Junaid, S.; Tran, M. Q.; Harding, S. E.; Ali, N. N.; Boccaccini, A. R., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008, 29 (1), 47-57.
91. Park, H.; Larson, B. L.; Guillemette, M. D.; Jain, S. R.; Hua, C.; Engelmayr, G. C., Jr.; Freed, L. E., The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Biomaterials 2011, 32 (7), 1856-64.
92. Sundback, C. A.; Shyu, J. Y.; Wang, Y.; Faquin, W. C.; Langer, R. S.; Vacanti, J. P.; Hadlock, T. A., Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 2005, 26 (27), 5454-64.
93. Allen, R. A.; Wu, W.; Yao, M.; Dutta, D.; Duan, X.; Bachman, T. N.; Champion, H. C.; Stolz, D. B.; Robertson, A. M.; Kim, K.; Isenberg, J. S.; Wang, Y., Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials 2014, 35 (1), 165-73.
94. Li, L.; Terry, C. M.; Shiu, Y. T.; Cheung, A. K., Neointimal hyperplasia associated with synthetic hemodialysis grafts. Kidney Int 2008, 74 (10), 1247-61.
95. de Valence, S.; Tille, J. C.; Mugnai, D.; Mrowczynski, W.; Gurny, R.; Moller, M.; Walpoth, B. H., Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 2012, 33 (1), 38-47.
96. Rai, R.; Tallawi, M.; Barbani, N.; Frati, C.; Madeddu, D.; Cavalli, S.; Graiani, G.; Quaini, F.; Roether, J. A.; Schubert, D. W.; Rosellini, E.; Boccaccini, A. R., Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater Sci Eng C Mater Biol Appl 2013, 33 (7), 3677-87.
97. Nijst, C. L.; Bruggeman, J. P.; Karp, J. M.; Ferreira, L.; Zumbuehl, A.; Bettinger, C. J.; Langer, R., Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 2007, 8 (10), 3067-73.
98. Gerecht, S.; Townsend, S. A.; Pressler, H.; Zhu, H.; Nijst, C. L.; Bruggeman, J. P.; Nichol, J. W.; Langer, R., A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 2007, 28 (32), 4826-35.
99. Wang, L.; Xu, K.; Hou, X.; Han, Y.; Liu, S.; Wiraja, C.; Yang, C.; Yang, J.; Wang, M.; Dong, X.; Huang, W.; Xu, C., Fluorescent Poly(glycerol-co-sebacate) Acrylate Nanoparticles for Stem Cell Labeling and Longitudinal Tracking. ACS Appl Mater Interfaces 2017, 9 (11), 9528-9538.
100. Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J. W.; Chan, E. P.; Carter, D. J.; Bettinger, C. J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E.; Galakatos, A.; Pryor, H.; Pomerantseva, I.; Masiakos, P. T.; Faquin, W.; Zumbuehl, A.; Hong, S.; Borenstein, J.; Vacanti, J.; Langer, R.; Karp, J. M., A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci U S A 2008, 105 (7), 2307-12.
101. Ifkovits, J. L.; Padera, R. F.; Burdick, J. A., Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Biomed Mater 2008, 3 (3), 034104.
102. Lang, N.; Pereira, M. J.; Lee, Y.; Friehs, I.; Vasilyev, N. V.; Feins, E. N.; Ablasser, K.; O'Cearbhaill, E. D.; Xu, C.; Fabozzo, A.; Padera, R.; Wasserman, S.; Freudenthal, F.; Ferreira, L. S.; Langer, R.; Karp, J. M.; del Nido, P. J., A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci Transl Med 2014, 6 (218), 218ra6.
103. Matteini, P.; Ratto, F.; Rossi, F.; Pini, R., Emerging concepts of laser-activated nanoparticles for tissue bonding. J Biomed Opt 2012, 17 (1), 010701.
104. Lauto, A.; Foster, L. J.; Ferris, L.; Avolio, A.; Zwaneveld, N.; Poole-Warren, L. A., Albumin-genipin solder for laser tissue repair. Lasers Surg Med 2004, 35 (2), 140-5.
105. O'Neill, A. C.; Winograd, J. M.; Zeballos, J. L.; Johnson, T. S.; Randolph, M. A.; Bujold, K. E.; Kochevar, I. E.; Redmond, R. W., Microvascular anastomosis using a photochemical tissue bonding technique. Lasers Surg Med 2007, 39 (9), 716-22.
106. Ranger, W. R.; Halpin, D.; Sawhney, A. S.; Lyman, M.; Locicero, J., Pneumostasis of experimental air leaks with a new photopolymerized synthetic tissue sealant. Am Surg 1997, 63 (9), 788-95.
107. Elvin, C. M.; Brownlee, A. G.; Huson, M. G.; Tebb, T. A.; Kim, M.; Lyons, R. E.; Vuocolo, T.; Liyou, N. E.; Hughes, T. C.; Ramshaw, J. A.; Werkmeister, J. A., The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials 2009, 30 (11), 2059-65.
108. Lee, Y.; Xu, C.; Sebastin, M.; Lee, A.; Holwell, N.; Xu, C.; Miranda Nieves, D.; Mu, L.; Langer, R. S.; Lin, C.; Karp, J. M., Bioinspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair. Adv Healthc Mater 2015, 4 (16), 2587-96.
109. Chau, L. T.; Rolfe, B. E.; Cooper-White, J. J., A microdevice for the creation of patent, three-dimensional endothelial cell-based microcirculatory networks. Biomicrofluidics 2011, 5 (3), 34115-3411514.
110. Levy, B. I.; Ambrosio, G.; Pries, A. R.; Struijker-Boudier, H. A., Microcirculation in hypertension: a new target for treatment? Circulation 2001, 104 (6), 735-40.
111. Pries, A. R.; Secomb, T. W.; Gaehtgens, P., Design principles of vascular beds. Circ Res 1995, 77 (5), 1017-23.
112. Zhuang, F. Y.; Fung, Y. C.; Yen, R. T., Analysis of blood flow in cat's lung with detailed anatomical and elasticity data. J Appl Physiol Respir Environ Exerc Physiol 1983, 55 (4), 1341-8.
113. Bellan, L. M.; Singh, S. P.; Henderson, P. W.; Porri, T. J.; Craighead, H. G.; Spector, J. A., Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures. Soft Matter 2009, 5 (7), 1354-1357.
114. Regehr, K. J.; Domenech, M.; Koepsel, J. T.; Carver, K. C.; Ellison-Zelski, S. J.; Murphy, W. L.; Schuler, L. A.; Alarid, E. T.; Beebe, D. J., Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009, 9 (15), 2132-9.
115. Wang, G. J.; Hsu, Y. F., Structure optimization of microvascular scaffolds. Biomed Microdevices 2006, 8 (1), 51-8.
116. Wang, H. W.; Cheng, C. W.; Li, C. W.; Chang, H. W.; Wu, P. H.; Wang, G. J., Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation. Int J Nanomed 2012, 7, 1865-1873.
117. Li, Y. S. J.; Haga, J. H.; Chien, S., Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 2005, 38 (10), 1949-1971.
118. Murray, C. D., The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad Sci U S A 1926, 12 (3), 207-14.
119. Sherman, On connecting large vessels to small: the meaning of Murray’s law. J Gen Physiol 1981, 78:431–453.
120. Banavar, J. R.; Damuth, J.; Maritan, A.; Rinaldo, A., Ontogenetic growth: Modelling universality and scaling. Nature 2002, 420 (6916), 626; discussion 626-7.
121. Zheng, X.; Shen, G.; Wang, C.; Li, Y.; Dunphy, D.; Hasan, T.; Brinker, C. J.; Su, B. L., Bio-inspired Murray materials for mass transfer and activity. Nat Commun 2017, 8, 14921.
122. McCulloh, K. A.; Sperry, J. S.; Adler, F. R., Water transport in plants obeys Murray's law. Nature 2003, 421 (6926), 939-42.
123. Emerson, D. R.; Cieslicki, K.; Gu, X.; Barber, R. W., Biomimetic design of microfluidic manifolds based on a generalised Murray's law. Lab Chip 2006, 6 (3), 447-54.
124. Reagent, T. S. a. C. V. A., alamarBlue™ Cell Viability
Assay Reagent http://www.interchim.fr/ft/6/66941P.pdf.
125. Marieb, E. N.; Hoehn, K., The Cardiovascular System:Blood Vessels. Pearson Education: 2013.
126. Kaiser, D.; Freyberg, M. A.; Friedl, P., Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 1997, 231 (3), 586-90.
127. Kaiser, D.; Freyberg, M. A.; Schrimpf, G.; Friedl, P., Apoptosis induced by lack of hemodynamic forces is a general endothelial feature even occuring in immortalized cell lines. Endothelium-New York 1999, 6 (4), 325-334.
128. Al-Nasiry, S.; Geusens, N.; Hanssens, M.; Luyten, C.; Pijnenborg, R., The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 2007, 22 (5), 1304-1309.
129. Xu, M. L.; McCanna, D. J.; Sivak, J. G., Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J Pharmacol Tox Met 2015, 71, 1-7.
130. Saunders, R. L.; Hammer, D. A., Assembly of Human Umbilical Vein Endothelial Cells on Compliant Hydrogels. Cell Mol Bioeng 2010, 3 (1), 60-67.
131. Stroka, K. M.; Aranda-Espinoza, H., Effects of Morphology vs. Cell-Cell Interactions on Endothelial Cell Stiffness. Cell Mol Bioeng 2011, 4 (1), 9-27.
132. Jalali, S.; Tafazzoli-Shadpour, M.; Haghighipour, N.; Omidvar, R.; Safshekan, F., Regulation of Endothelial Cell Adherence and Elastic Modulus by Substrate Stiffness. Cell Commun Adhes 2015, 22 (2-6), 79-89.
133. Yeung, T.; Georges, P. C.; Flanagan, L. A.; Marg, B.; Ortiz, M.; Funaki, M.; Zahir, N.; Ming, W. Y.; Weaver, V.; Janmey, P. A., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel 2005, 60 (1), 24-34.
134. Byfield, F. J.; Reen, R. K.; Shentu, T. P.; Levitan, I.; Gooch, K. J., Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J Biomech 2009, 42 (8), 1114-1119.
135. Ataollahi, F.; Pramanik, S.; Moradi, A.; Dalilottojari, A.; Pingguan-Murphy, B.; Abas, W. A. W.; Abu Osman, N. A., Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. Journal of Biomedical Materials Research Part A 2015, 103 (7), 2203-2213.
136. Yeh, Y. T.; Hur, S. S.; Chang, J.; Wang, K. C.; Chiu, J. J.; Li, Y. S.; Chien, S., Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9. Plos One 2012, 7 (10).
137. Sung, H. J.; Meredith, C.; Johnson, C.; Galis, Z. S., The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004, 25 (26), 5735-5742.
138. Heng, B. C.; Xia, Y.; Shang, X. B.; Preiser, P. R.; Law, S. K. A.; Boey, F. Y. C.; Venkatraman, S. S., Comparison of the Adhesion and Proliferation Characteristics of HUVEC and Two Endothelial Cell Lines (CRL 2922 and CRL 2873) on Various Substrata. Biotechnol Bioproc E 2011, 16 (1), 127-135.
139. Relou, I. A.; Damen, C. A.; van der Schaft, D. W.; Groenewegen, G.; Griffioen, A. W., Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell 1998, 30 (5), 525-30.
140. Bala, K.; Ambwani, K.; Gohil, N. K., Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: Implication on use of higher passage cells. Tissue Cell 2011, 43 (4), 216-222.
141. Sgarioto, M.; Vigneron, P.; Patterson, J.; Malherbe, F.; Nagel, M. D.; Egles, C., Collagen type I together with fibronectin provide a better support for endothelialization. C R Biol 2012, 335 (8), 520-8.
142. Owens, R. J.; Baralle, F. E., Mapping the collagen-binding site of human fibronectin by expression in Escherichia coli. EMBO J 1986, 5 (11), 2825-30.
143. van Horssen, R.; Galjart, N.; Rens, J. A.; Eggermont, A. M.; ten Hagen, T. L., Differential effects of matrix and growth factors on endothelial and fibroblast motility: application of a modified cell migration assay. J Cell Biochem 2006, 99 (6), 1536-52.
144. Mellor, H. HUVEC cell culture. https://mellorlab.wordpress.com/2015/05/01/huvec-cell-culture/.
145. Olsen, J. V.; Ong, S. E.; Mann, M., Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 2004, 3 (6), 608-14.
146. Dresner, E.; Schubert, M., The comparative susceptibility to collagenase and trypsin of collagen, soluble collagens and renal basement membrane. J Histochem Cytochem 1955, 3 (5), 360-8.
147. French, M. F.; Bhown, A.; Van Wart, H. E., Identification of Clostridium histolyticum collagenase hyperreactive sites in type I, II, and III collagens: lack of correlation with local triple helical stability. J Protein Chem 1992, 11 (1), 83-97.
148. Huang, H. L.; Hsing, H. W.; Lai, T. C.; Chen, Y. W.; Lee, T. R.; Chan, H. T.; Lyu, P. C.; Wu, C. L.; Lu, Y. C.; Lin, S. T.; Lin, C. W.; Lai, C. H.; Chang, H. T.; Chou, H. C.; Chan, H. L., Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci 2010, 17, 36.
149. Wolfe, M. S., Intramembrane proteolysis. Chem Rev 2009, 109 (4), 1599-612.
150. Engerman, R. L.; Pfaffenbach, D.; Davis, M. D., Cell turnover of capillaries. Lab Invest 1967, 17 (6), 738-43.
151. Punshon, G.; Vara, D. S.; Sales, K. M.; Kidane, A. G.; Salacinski, H. J.; Seifalian, A. M., Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea) urethane. Biomaterials 2005, 26 (32), 6271-6279.
152. Bidarra, S. J.; Barrias, C. C.; Barbosa, M. A.; Soares, R.; Amedee, J.; Granja, P. L., Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res 2011, 7 (3), 186-197.
153. Marin, V.; Kaplanski, G.; Gres, S.; Farnarier, C.; Bongrand, P., Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cells. J Immunol Methods 2001, 254 (1-2), 183-190.
154. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35 (4), 495-516.
155. Schrimpf, G.; Schroder, M.; Weitnauer, E.; Friedl, P., Metabolic Rates of Vascular Endothelial-Cells in-Vitro. Cytotechnology 1994, 16 (1), 43-50.
156. Wang, S.; Meng, F.; Mohan, S.; Champaneri, B.; Gu, Y., Functional ENaC channels expressed in endothelial cells: a new candidate for mediating shear force. Microcirculation 2009, 16 (3), 276-87.
157. Sun, X. M.; Zheng, R. L.; Cheng, L. Y.; Zhao, X.; Jin, R.; Zhang, L.; Zhang, Y.; Zhang, Y. G.; Cui, W. G., Two-dimensional electrospun nanofibrous membranes for promoting random skin flap survival. Rsc Advances 2016, 6 (11), 9360-9369.
158. Esch, M. B.; Post, D. J.; Shuler, M. L.; Stokol, T., Characterization of In Vitro Endothelial Linings Grown Within Microfluidic Channels. Tissue Eng Pt A 2011, 17 (23-24), 2965-2971.
159. Choi, J. S.; Piao, Y.; Seo, T. S., Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer. Bioproc Biosyst Eng 2013, 36 (12), 1871-1878.
160. Li, X.; Mearns, S. M.; Martins-Green, M.; Liu, Y. X., Procedure for the Development of Multi-depth Circular Cross-sectional Endothelialized Microchannels-on-a-chip. Jove-J Vis Exp 2013, (80).
161. Pawley, J., Handbook of Biological Confocal Microscopy. Third ed.; Springer: 2006.
162. Cai, L.; Wang, S., Elucidating colorization in the functionalization of hydroxyl-containing polymers using unsaturated anhydrides/acyl chlorides in the presence of triethylamine. Biomacromolecules 2010, 11 (1), 304-7.