研究生: |
陳穎農 |
---|---|
論文名稱: |
利用螢光感測分子技術進行微管道內溫度及速場同步量測 Simultaneous measurement of velocity and temperature profile in microchannel flow using molecule based sensors |
指導教授: |
劉通敏
黃智永 |
口試委員: |
陳紹文
劉通敏 黃智永 王明文 施冠丞 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 微粒子影像測速技術 、溫度螢光感測分子 、同步量測 、衰變時間 |
外文關鍵詞: | PIV, TSP, Simultaneous measurement, Lifetime |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨為整合微分子螢光溫度量測技術(TSP)與微粒子影像測速技術(μ-PIV)並利用既有之μ-PIV設備建立微尺度下之溫度及速度同步量測系統,以簡化同步量測的實驗架設複雜度,解決微尺度熱傳研究中速度與溫度分別量測所造成之實驗誤差問題。為建立同步量測技術中的溫度量測方法,本研究擇定以螢光分子EuTTA來建立微尺度下的螢光衰變校正的溫度量測技術Lifetime-based TSP。實驗中利用像素合併、提升溫度螢光溶液濃度、增加激發光源驅動功率之方式增加實驗中由CCD相機所擷取之螢光影像亮度,實現以量測衰變時間來偵測溫度的技術。
為避免研究微流體熱傳之軸向熱傳效應,本研究以微製程方式製作微型加熱器,並將該微型加熱器裝置於微直管道中,以所開發的同步量測技術取得PDMS微矩形流道在單面定熱通量的加熱方式之下乙醇溶液溫度及速度場,藉此驗證本技術之可行性。於微尺度下本技術可經由CCD相機擷取流場中包含螢光粒子亮點的螢光影像同步成功量測微流道內之溫度及速度場之分布,且由所取得液體軸向溫度分布圖可證明微型加熱器可成功解決軸向熱傳之問題。
於本研究中所開發的同步量測系統僅需使用一台CCD相機即可量測微流道中之溫度與速度場,本技術於25℃至40℃間螢光感測溶液之靈敏度為5.06 μs/℃,空間解析度則可達5.38 μm/pixel。
[1] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
[2] C. Huang, J. W. Gregory, H. Nagai, K. Asai, and J. P. Sullivan, "Molecular Sensors in Microturbine Measurement," in ASME 2006 International Mechanical Engineering Congress and Exposition, 2006, pp. 577-583.
[3] C.-Y. Huang, C.-A. Li, H.-Y. Wang, and T.-M. Liou, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," Journal of Micromechanics and Microengineering, vol. 23, p. 037001, 2013.
[4] R. J. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual review of fluid mechanics, vol. 23, pp. 261-304, 1991.
[5] C. Meinhart, A. Prasad, and R. Adrian, "A parallel digital processor system for particle image velocimetry," Measurement Science and Technology, vol. 4, p. 619, 1993.
[6] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, pp. 316-319, 1998.
[7] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, "PIV measurements of a microchannel flow," Experiments in fluids, vol. 27, pp. 414-419, 1999.
[8] P. Vennemann, K. T. Kiger, R. Lindken, B. C. Groenendijk, S. Stekelenburg-de Vos, T. L. ten Hagen, et al., "In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart," Journal of biomechanics, vol. 39, pp. 1191-1200, 2006.
[9] R. Lindken, J. Westerweel, and B. Wieneke, "Stereoscopic micro particle image velocimetry," Experiments in Fluids, vol. 41, pp. 161-171, 2006.
[10] H. Kinoshita, S. Kaneda, T. Fujii, and M. Oshima, "Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV," Lab on a Chip, vol. 7, pp. 338-346, 2007.
[11] R. Lima, S. Wada, K.-i. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science and Technology, vol. 17, p. 797, 2006.
[12] L. Pietri, M. Amielh, and F. Anselmet, "Simultaneous measurements of temperature and velocity fluctuations in a slightly heated jet combining a cold wire and Laser Doppler Anemometry," International journal of heat and fluid flow, vol. 21, pp. 22-36, 2000.
[13] H. Park, D. Dabiri, and M. Gharib, "Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder," Experiments in Fluids, vol. 30, pp. 327-338, 2001.
[14] T. Praisner, D. Sabatino, and C. Smith, "Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements," Experiments in fluids, vol. 30, pp. 1-10, 2001.
[15] P. Pringsheim, "Fluorescence and phosphorescence," 1949.
[16] H. Hu and M. M. Koochesfahani, "Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder," Measurement Science and Technology, vol. 17, p. 1269, 2006.
[17] A. Omrane, P. Petersson, M. Aldén, and M. Linne, "Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors," Applied Physics B, vol. 92, pp. 99-102, 2008.
[18] S. Someya, S. Yoshida, Y. Li, and K. Okamoto, "Combined measurement of velocity and temperature distributions in oil based on the luminescent lifetimes of seeded particles," Measurement Science and Technology, vol. 20, p. 025403, 2009.
[19] S. Grafsrønningen and A. Jensen, "Simultaneous PIV/LIF measurements of a transitional buoyant plume above a horizontal cylinder," International Journal of Heat and Mass Transfer, vol. 55, pp. 4195-4206, 2012.
[20] J. Vogt and P. Stephan, "Using microencapsulated fluorescent dyes for simultaneous measurement of temperature and velocity fields," Measurement Science and Technology, vol. 23, p. 105306, 2012.
[21] B.-H. Huang, "The experimental study of heat transfer with segmented flow in microchannel using temperature sensitive paint and micro particle image velocimetry," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[22] G. Maranzana, I. Perry, and D. Maillet, "Mini-and micro-channels: influence of axial conduction in the walls," International Journal of Heat and Mass Transfer, vol. 47, pp. 3993-4004, 2004.
[23] G. Hetsroni, A. Mosyak, E. Pogrebnyak, and L. Yarin, "Heat transfer in micro-channels: Comparison of experiments with theory and numerical results," International Journal of Heat and Mass Transfer, vol. 48, pp. 5580-5601, 2005.
[24] N. Caney, P. Marty, and J. Bigot, "Friction losses and heat transfer of single-phase flow in a mini-channel," Applied thermal engineering, vol. 27, pp. 1715-1721, 2007.
[25] C.-A. Li, "The Study of Fluid Flow and Heat Transfer inside Rectangular PDMS Microchannel," Master, Power Mechanical Engineering, National Tsing Hua University, 2011.
[26] R. K. Shah and A. L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data vol. 1: Academic press, 1978.
[27] M. Olsen and R. Adrian, "Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry," Experiments in Fluids, vol. 29, pp. S166-S174, 2000.
[28] M. Rossi, R. Segura, C. Cierpka, and C. J. Kähler, "On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV," Experiments in fluids, vol. 52, pp. 1063-1075, 2012.
[29] B. Zelelow, G. E. Khalil, G. Phelan, B. Carlson, M. Gouterman, J. B. Callis, et al., "Dual luminophor pressure sensitive paint: II. Lifetime based measurement of pressure and temperature," Sensors and Actuators B: Chemical, vol. 96, pp. 304-314, 2003.
[30] N. Çelebi, M. Arık, and Y. Onganer, "Analysis of fluorescence quenching of pyronin B and pyronin Y by molecular oxygen in aqueous solution," Journal of luminescence, vol. 126, pp. 103-108, 2007.
[31] M. Montalti, A. Credi, L. Prodi, and M. T. Gandolfi, Handbook of Photochemistry, Third Edition: CRC Press, 2006.
[32] L. M. Coyle and M. Gouterman, "Correcting lifetime measurements for temperature," Sensors and Actuators B: Chemical, vol. 61, pp. 92-99, 1999.
[33] S.-S. Hsieh and C.-Y. Lin, "Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces," International Journal of Heat and Mass Transfer, vol. 52, pp. 260-270, 2009.
[34] C.-M. Wu, "The application of molecule-based temperature sensors for surface and fluid temperature measurement inside rectangular microchannel under constant heat flux boundary condition," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[35] Z. Duan and Y. Muzychka, "Slip flow in the hydrodynamic entrance region of circular and noncircular microchannels," Journal of Fluids Engineering, vol. 132, p. 011201, 2010.
[36] H.-S. Chuang, S. T. Wereley, and L. Gui, "Characterization of single pixel evaluation PIV for precise flow measurement," in 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2006.