簡易檢索 / 詳目顯示

研究生: 詹欣達
Chan, Hsin-Ta
論文名稱: 用於轉換錯誤之掃描鏈內建自我測試電路編譯器
A Scan-based Transition Fault BIST Compiler
指導教授: 劉靖家
Liou, Jing-Jia
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 內建自我測試
外文關鍵詞: built-in self test, scan-based BIST
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BIST is an attractive approach to test delay faults due to its support for at-speed test. In order to get high quality test patterns with least built-in hardware overheads, an algorithm is proposed to design high fault coverage LFSRs and reseeding logic as a test pattern generator of a transition fault scan-based BIST. This BIST architecture is designed for at-speed testing with launch-off-capture test scheme. By incorporating a probability-based estimator and a fast fault simulation in a simulated-annealing based framework, we can select one high-quality LFSR as the test pattern generator. For the remaining hard-to-detect faults, test patterns are generated using a specialized ATPG model for scan-based BIST. Then another search process is then invoked to select high fault coverage seeds for the LFSR from the deterministic test patterns. The constructed hardware LFSR generator can increase the pseudo-random fault coverage without any additional overheads. Also the selected seeds can generate the same deterministic fault coverage of ATPG with only 5.75% of the original test pattern numbers. Additionally, the overall scan-based BIST insertion flow is compatible with the standard cell-based design flow.


    對於測試轉換延遲錯誤 (transition fault),內建自我測試電路 (BIST) 是一個不錯的方法,因為它可以支援全速測試 (at-speed test)。為了獲得高品質的測試樣本 (test pattern),我們提出了一個演算法,設計出高錯誤涵蓋率 (fault coverage) 的線性反饋位移暫存器 (LFSR) 和種子置換邏輯電路 (reseeding logic),作為測
    試轉換延遲錯誤的以掃描鏈為基底的內建自我測試電路 (scan-based BIST) 的測試樣本產生器。這個內建自我測試電路架構是用launch-off-capture 的方式來做全速測試。藉由合併以機率為基礎的錯誤估計和快速的錯誤模擬到以模擬降溫法 (Simulated Annealing) 為基礎的架構內,我們可以挑選一個高品質的線性反饋位移暫存器作為測試樣本產生器。對於剩下來的難以被測到的轉換延遲錯誤,我們使用專門用於以掃描鏈為基底的內建自我測試電路的自動測試樣本產生器 (ATPG) 模型來產生決定性的測試樣本。接著,使用另一個搜尋程序從決定性的測試樣本之中,挑選出高錯誤涵蓋率的種子給線性反饋位移暫存器作為初始值使用。被建構出來的線性反饋位移暫存器硬體電路可以不用花費任何額外的成本,而增加虛擬亂數測試樣本的錯誤涵蓋率。除此之外,被挑選出來的種子可以達到和自動測試樣本產生器模型相同的決定性的測試錯誤涵蓋率,卻只需要儲存原本5.75%的測試樣本數。最後,我們所提出的以掃描鏈為基底的內建自我測試電路的產生流程可以完全融入標準的以細胞為基底的設計流程 (cell-based design flow) 之中。

    1 Introduction 8 2 Background 11 2.1 Pseudo-random Pattern Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Scan-based BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Transition Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 PreviousWork 15 3.1 Test-per-clock BIST Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Overall Flow of Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Fault List Reduction and Fast Coverage Estimation . . . . . . . . . . . . . . . . . 17 3.3.1 Probability-based Transition Fault Simulation . . . . . . . . . . . . . . . . 17 3.3.2 Hard-to-detect Fault Sampling . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Search Strategies for Initial Application Phase . . . . . . . . . . . . . . . . . . . . 21 3.5 Reseeding Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.1 Constrained ATPG with LFSR and Phase Shifter . . . . . . . . . . . . . . 23 3.5.2 Searching Algorithm for High-coverage Seeds . . . . . . . . . . . . . . . 24 4 Proposed Methods 27 4.1 Improvement of Probability-based Fault Simulation . . . . . . . . . . . . . . . . . 27 4.2 Test-per-scan BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.1 Scan-based BIST Architecture . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 Scan BIST Insertion Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.3 Primary Input Scan Chain Design . . . . . . . . . . . . . . . . . . . . . . 32 4.2.4 Reconfigurable LFSR and Phase Shifter . . . . . . . . . . . . . . . . . . . 34 4.2.5 Constrained ATPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.6 Constrained ATPG – LFSR Matrix Reduction . . . . . . . . . . . . . . . . 37 5 Experimental Results 40 5.1 Improvement of Probability-based Fault Simulation . . . . . . . . . . . . . . . . . 40 5.2 Search High Quality LFSRs for Test-per-scan BIST . . . . . . . . . . . . . . . . . 41 5.2.1 Phase 1 – Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.2 Phase 2 – Seed Selection for Reseeding Phase . . . . . . . . . . . . . . . . 42 6 Conclusions and Future Work 49 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    [1] C. E. Stroud, A Designer’s Guide to Build-in Self-Test. Kluwer Academic Publishers,
    Boston, 2002.
    [2] P. Bernardi, G. Masera, F. Quaglio, and M. S. Reorda, “Testing logic cores using a BIST
    P1500 compliant approach: a case of study,” in Proceedings of Design, Automation and Test
    in Europe Conference and Exhibition, vol. 3, 2005, pp. 228–233.
    [3] N. A. Touba and E. J. McCluskey, “Bit-fixing in pseudorandom sequences for scan BIST,”
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
    pp. 545–555, Apr. 2001.
    [4] H.-J. Wunderich and G. Kiefer, “Bit-flipping BIST,” in Proceedings of IEEE/ACM International
    Conference on Computer-Aided Design, 1996.
    [5] N. Z. Basturkmen, S. M. Reddy, and J. Rajski, “Improved algorithms for constructive multiphase
    test point insertion for scan based BIST,” in Proceedings of Design Automation Conference
    in Asia and South Pacific, 2002, pp. 604–611.
    [6] M. Nakao, S. Kobayashi, K. Hatayama, K. Iijima, and S. Terada, “Low overhead test point
    insertion for scan-based BIST,” in Proceedings of IEEE International Test Conference, 1999.
    [7] C.-A. Chen and S. Gupta, “Design of efficient BIST test pattern generators for delay testing,”
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
    pp. 1568–1575, Dec. 1996.
    [8] I. Pomeranz and S. M. Reddy, “On methods to match a test pattern generator to a circuitunder-
    test,” IEEE Transactions on VLSI Systems, vol. 15, Sept. 1998.
    [9] P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch, “A test vector inhibiting technique
    for low energy BIST design,” in Proceedings of IEEE VLSI Test Symposium, 1999.
    [10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science,
    vol. 220, no. 4598, pp. 671–680, 1983.
    [11] K. T. Cheng, “Transition fault testing for sequential circuits,” in Proceedings of IEEE/ACM
    International Conference on Computer-Aided Design, Dec. 1993, pp. 1971–1983.
    [12] A. Krstic and K.-T. Cheng, Delay fault testing for VLSI circuits. Kluwer Academic Publishers,
    Boston, 1999.
    [13] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in test for
    circuits with scan based on reseeding of multiple-polynomial linear feedback shift registers,”
    IEEE Transactions on Computers, pp. 223–233, 1995.
    [14] C. Krishna, A. Jas, and N. Touba, “Test vector encoding using partial LFSR reseeding,” in
    Proceedings of IEEE International Test Conference, 2001, pp. 885–893.
    [15] N. C. Lai and S. J. Wang, “A reseeding technique for LFSR-based BIST applications,” in
    Proceedings of IEEE Asian Test Symposium, 2002, pp. 200–205.
    [16] H. Liang, M. Yi, X. Fang, and C. Jiang, “A BIST scheme based on selecting state generation
    of folding counters,” in Proceedings of IEEE Asian Test Symposium, 2005, pp. 144–149.
    [17] H. J.Wunderlich, “Multiple distributions for biased random test patterns,” IEEE Transactions
    on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 584–593,
    1990.
    [18] I. Pomeranz and S. M. Reddy, “3-weight pseudo-random test generation based on a deterministictest
    set for combinational and sequential circuits,” IEEE Transactions on Computer-
    Aided Design of Integrated Circuits and Systems, vol. 12, no. 7, pp. 1050–1058, 1993.
    [19] C. Yu, S. M. Reddy, and I. Pomeranz, “Circuit independent weighted pseudo-Random BIST
    Pattern Generator,” in Proceedings of IEEE Asian Test Symposium, 2005, pp. 132–137.
    [20] V. Gherman, H. J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, and M. Garbers, “Efficient
    pattern mapping for deterministic logic BIST,” in Proceedings of IEEE International Test
    Conference, 2004.
    [21] Y. C. Lin, F. Lu, and K. T. Cheng, “Pseudo-functional scan-based BIST for delay fault,” in
    Proceedings of IEEE VLSI Test Symposium, 2005, pp. 229–234.
    [22] N. A. Touba and E. J. McCluskey, “Bit-fixing in pseudorandom sequences for scan BIST,”
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
    no. 4, pp. 545–555, 2001.
    [23] H. J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proceedings of IEEE/ACM International
    Conference on Computer-Aided Design, 1997, pp. 337–343.
    [24] N. Z. Basturkmen, S. M. Reddy, and J. Rajski, “Improved algorithms for constructive multiphase
    test point insertion for scan based BIST,” in Proceedings of Design Automation Conference
    in Asia and South Pacific, Jan. 2002, pp. 604 – 611.
    [25] M. Nakao, S. Kobayashi, K. Hatayama, K. Iijima, and S. Terada, “Low-overhead test point
    insertion for scan-based BIST,” in Proceedings of IEEE International Test Conference, 1999,
    pp. 348–357.
    [26] N. A. Touba and E. J. McCluskey, “Automated logic synthesis of random pattern testable
    circuits,” in Proceedings of IEEE International Test Conference, 1994, pp. 174–183.
    [27] P. Bardell and W. McAnney, “Self-testing of multichip logic modules,” in Proceedings of
    IEEE International Test Conference, 1982, pp. 200–204.
    [28] ——, “Parallel pseudorandom sequences for build-in test,” in Proceedings of IEEE International
    Test Conference, Oct. 1984, pp. 302–308.
    [29] S. S. Ciou, “Optimization of LFSRs and Reseeding Logics for Transition Fault BIST,” in
    Master thesis, Department of Electical Engineering, National Tsing Hua University, May
    2007.
    [30] M. T. Hsieh, S. Y. Lu, J. J. Liou, and A. Kifli, “High quality pattern generation for delay
    defects with functional sensitized paths,” in Proceedings of IEEE Asian Test Symposium,
    Nov. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE