簡易檢索 / 詳目顯示

研究生: 洪千惠
論文名稱: 國小二年級學童整數乘法教材教學實驗之研究
指導教授: 林碧珍
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 174
中文關鍵詞: 國小二年級教學實驗教材乘法意義乘法解題錯誤類型
外文關鍵詞: second graders of elementary school, experiment teaching, teaching material, the meaning of multiplication, solving multiplicative problems, error pattern
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討國小二年級學童以不同的整數乘法教材學習之表現,研究方法採準實驗研究法,實驗組以乘法替代性教材學習,對照組則以陽光教材(匿名)學習,並透過前測、前後測、後測以及延後測的統計分析與晤談結果,比較兩組學童在乘法意義與解題上的表現。實驗組和對照組各為103和104人,在前測沒有統計上的顯著差異,因此兩組學童學習乘法的起點相當。在節數方面,實驗組和對照組各上63和62節課程。
    主要研究結果如下:
    1.對於乘法意義的表現:
    (1) 在倍的語言轉換方面:實驗組在幾個幾的表現顯著優於對照組,在幾有幾個和幾的幾倍的表現則沒有顯著差異。
    (2) 在單位量轉換方面:實驗組在乘法算式表徵的表現顯著優於對照組,在複製集聚單位而後相加的表現則沒有顯著差異。
    2.對於乘法問題的解題表現:
    (1) 在數字大小方面:實驗組在Ⅰ×Ⅰ和1×Ⅰ的解題表現顯著優於對照組,在Ⅱ×Ⅰ的解題表現則沒有顯著差異(Ⅰ表示一位數,Ⅱ表示二位數)。
    (2) 在限制解題型式方面:實驗組在開放解題和乘法算式的解題表現顯著優於對照組,在乘法算式填充題的解題表現則沒有顯著差異。
    (3) 在乘法情境方面:實驗組在等組群的解題表現顯著優於對照組,在陣列的解題表現則沒有顯著差異。
    3. 解題的錯誤類型與解題困難:
    本研究發現的解題錯誤依加法算式、乘法算式和乘法算式填充題分為數種類型,且每一種錯誤類型出現的次數皆是實驗組少於對照組。此外,本研究發現學童的解題困難包含欠缺基本的語文知識、對幾有幾個和幾個幾的語言描述不易理解、對乘法算式記錄感到困難、忽視單位量與單位數位置的意義性、受限於九九乘法表的限制等。
    4.延後測與後測表現之比較:
    (1) 在乘法意義方面:實驗組在幾個幾和幾有幾個的表現有顯著退步,對照組的表現則保持穩定。兩組學童在複製集聚單位而後相加都有顯著進步,在乘法算式表徵的表現則是改變不大。
    (2) 在解題方面:兩組學童在數字大小、乘法算式解題和等組群的解題表現並無顯著差異,在乘法算式填充題方面都有明顯的退步。此外,實驗組在開放解題的表現比對照組明顯退步,對照組則在陣列的表現上比實驗組明顯進步。


    The purpose of this study was to explore the performance of the different whole number multiplication of teaching materials learned by second graders of the elementary school. The research method was adopted with quasi-experimental design. The experiment group used the alternative materials and the contrast group used the issued textbook. To compare the performance of the two groups in terms of the meaning of multiplication and solving problems, the researcher analyzed the result of the pretest, the middle test, the post test, the retention test and interviewed with students. The experiment group consisted of 103 students and the contrast group consisted of 104 students. There were no obvious variance between the two groups in statistic of the pretest, therefore they had the similar ability. The experiment group was taught 63 activities and the contrast group 62 was taught.
    The main study results were shown as follows:
    1. In the meaning of multiplication:
    (1) In multiplicative language translation: The experiment group was prior to the contrast group significantly in the performances of the language(such as three of fours). These two groups had no significant difference in the performances of the language(such as three had fours) and the other language(such as three times as much as four).
    (2) In unit translation: The experiment group was prior to the contrast group in multiplicative representation significantly. These two groups had no significant difference in copying unit and adding.
    2. In solving problems:
    (1) The experiment group was prior to the contrast group in solvingⅠ×Ⅰand 1×Ⅰproblems significantly. These two groups had no significant difference in solvingⅡ×Ⅰproblems.(Ⅰis represented as one digit number and Ⅱ is represented as two digits number. )
    (2) The experiment group was prior to the contrast group in solving the opening and multiplication problems significantly. These two groups had no significant difference in solving fill-in the blank in multiplication problems.
    (3) The experiment group was prior to the contrast group in solving the equal group problems significantly. These two groups had no significant difference in solving rectangular array problems.
    3. The error pattern and difficulties: The study found that there were several error patterns classified in terms of addition, multiplication and fill-in the blank in multiplication. The number of each one of the error pattern were the experiment group less than the contrast group. In addition, the study also found that students lacked basic language knowledge. They don't understand the description of languages(such as three had fours and three of fours). They felt difficult with multiplicative representation record. They ignored the meaning of the position of unit and the number of unit, and their solving performance was restricted to multiplication table.
    4. In comparing the retention test with the post test:
    (1) In the meaning of multiplication: The experiment group made no progress in languages(such as three had fours and three of fours)significantly, but the contrast group remained stable. These two groups both made progress in copying unit and adding significantly, but had no obvious difference in multiplicative representation.
    (2) In solving problems: The performances of these two groups had no significant difference in number, multiplication and equal group problems, but they both made no progress in solving fill-in the blank in multiplication problems. Besides, the experiment group was inferior to the contrast group significantly in the performances of solving opening problems, and the contrast group was prior to the experiment group in the performances of solving rectangular array problems.

    第一章 緒論 1 第一節 研究動機 1 第二節 研究背景 4 第三節 研究目的與研究問題 7 第四節 名詞釋義 8 第五節 研究範圍與限制 10 第二章 文獻探討 12 第一節 乘法的意義 12 第二節 乘法的結構 20 第三節 乘法解題 22 第三章 研究方法 31 第一節 教材分析 31 第二節 研究對象與取樣方法 48 第三節 研究設計 55 第四節 研究工具 60 第五節 實施程序 62 第六節 資料處理與分析 66 第四章 研究結果與分析 71 第一節 實驗組和對照組在乘法意義的表現 71 第二節 實驗組和對照組學童的解題表現 82 第三節 學童解題的錯誤類型與解題困難 97 第四節 實驗組與對照組在後測與延後測表現之比較 113 第五章 結論與建議 121 第一節 結論 121 第二節 建議 128 參考文獻 132 中文部份 132 英文部份 135 附 錄 附錄一:九年一貫課程綱要與暫行綱要能力指標之比較 一-1 附錄二:乘法替代性教材二年級教學單位雙向細目表 二-1 附錄三:乘法替代性教材二年級教學活動設計 三-1 附錄四:題型分析表 表4-1 二上 前測題型分析表 四-1 表4-2 二下 前後測題型分析表 四-4 表4-3 二下 後測題型分析表 四-8 附錄五:試卷 二上 前測試卷 五-1 二下 前後測試卷 五-3 二下 後測試卷 五-5 附錄六:晤談試卷 二上 後測晤談試卷 六-1 二下 後測晤談試卷 六-2 附錄七:解題類型編碼表 表7-1 二上 前測解題類型編碼表 七-1 表7-2 二下 前後測解題類型編碼表 七-3 表7-3 二下 後測解題類型編碼表 七-6 附錄八:前測、前後測與後測試題雙向細目對照表 八-1

    中文部份
    呂玉琴(1998):國小學生對乘除法概念的瞭解。中華民國第十四屆科學教育學術研討會暨第十一屆科學教育學會年會會議手冊及短篇論文彙編。高雄師範大學,pp.631-638。
    林慧麗(1991):幼兒解答乘除問題的策略。國立台灣大學心理學研究所碩士論文。
    林原宏(1994):國小高年級學生解決乘除文字題之研究-以列式策略與試題分析為探討基礎。國立台中師範學院國民教育研究所碩士論文。
    林碧珍(1991):國小兒童對於乘除法應用問題之認知結構。國立新竹師範學院學報,5,221-288。
    林碧珍(2003):整數乘法能力指解讀與詮釋之在職教師進修研習成果報告(92A-127)。
    林碧珍、蔡文煥(2004):九年一貫數學能力指標的詮釋:全數的乘法。九十二年度國家科學委員會專題研究計畫成果報告(編號:NSC92-2522-S-134-002),未出版。
    吳明清(1991):教育研究—基本觀念與方法之分析。台北:五南圖書出版公司。
    吳仁俊(1996):兒童的乘法概念研究-一個三年級的個案。國立高雄師範大學數學教育研究所碩士論文。
    李俊仁(1991):一位數乘法答題策略發展之研究。國立中正大學心理研究所碩士論文。
    李光榮(1997):國小兒童正整數乘除概念之研究:一個國小四年級兒童之個案研究。國立嘉義師範學院國民教育研究所碩士論文。
    李連芬(2002):教學模組之設計與實踐-以國小二年級乘法補救教學為例。屏東師範學院數理教育研究所碩士論文。
    阮正誼(2002):認知衝突融入教學對解決學童小數乘除問題暗隱模式迷思之研究。台南師範學院教師在職進修數學碩士學位班碩士論文。
    沈明來(2001):生物統計學入門。台北市:九州圖書。第四版。
    周文欽(2002):研究方法—實徵性研究取向。台北:心理出版社。
    周筱亭、黃敏晃主編,蔣治邦、謝堅、陳竹村、吳淑娟、林昭珍編著(2000):國小數學教材分析-整數的乘除運算。台北:台灣省國民學校教師研習會。
    許美華(2000):國小二年級學童正整數乘法問題解題策略之研究。八十九學年度師範學院教育學術論文發表會論文集第二輯,pp.529-553。
    許淑萍(2001):國小學生乘除法表徵能力與後設認知相關之研究。台中師範學院教育測驗統計研究所碩士論文。
    陳淑琳(2002):國小二年級學童乘法文字題解題歷程之研究–以屏東市一所國小為例。屏東師範學院數理教育研究所碩士論文。
    陳瓊瑜(2002):國小三年級數學學習困難學生乘法應用問題解題歷程之研究。彰化師範大學特殊教育學系在職進修專班碩士論文。
    陳吟米(2002):國小一、二、三年級學童單位量轉換問題解題歷程之研究。台南師範學院教師在職進修數學碩士學位班碩士論文。
    陳景堂(2003):統計分析SPSS for Windows入門與應用。台北:儒林圖書有限公司。第四版。
    郭家富(2003):乘法解題策略教學對小學二級兒童解決乘法問題之影響。國立中正大學心理學研究所碩士論文。
    教育部TESEC國教專業社群網。網址:http://teach.eje.edu.tw/。2004╱04╱24。
    張紹勳、張紹評與林秀娟(2001):SPSS For Windows統計分析:初等統計與高等統計(上、下冊)。台北市:松崗。第四版。
    張樂明(2004):國小六年級學童分數概念之診斷教學研究。國立台北師範學院數理教育研究所碩士論文。
    國立政治大學教育研究所主編(1994):教育研究方法論文集。台灣書店。
    國立編譯館主編(2000):數學教學指引國民小學二年級上學期第3冊。國立編譯館。
    國立編譯館主編(2001):數學教學指引國民小學二年級下學期第4冊。國立編譯館。
    曹郁玲(2000):國小六年級學生乘法概念數學解題溝通之表現分析。台南師範學院國民教育研究所碩士論文。
    甯自強(1991):單位量的變換(一)~正整數乘除法運思的啟蒙。教師之友,3(1),27-34。
    甯自強(1997):新課程對乘法啟蒙教材的處理。國民小學數學科新課程概說(低年級)pp77-85。台灣省國民學校教師研習會。
    湯錦雲(2002):國小五年級學童分數概念與運算錯誤類型之研究。屏東師範學院數理教育研究所碩士論文。
    蔡寬信(2001):國民小學四、五、六年級學童乘法思考之研究。海峽兩岸小學教育論文集,pp.143-163。
    蕭美琪(2003):國小學童乘法解題與整合認知之相關研究。台中師範學院教育測驗統計研究所碩士論文。

    英文部份
    Anghileri,J.(1989).An investigation of young children’s understanding of multiplication. Educational Studies in Mathematics,20,367-385.
    Brown,M.(1981c).Levels of Understanding of Number Operations,Place-Value and Decimals in Secondary School Children-Ph.D.Thesis.University of London, Chelsea College.
    Bell,A.,Greer,B.Grimison,L.& Mangan,C.(1989). Children’s performance on multiplicative word problems:elements of a descriptive theory. Journal for Research in Mathematics Education, 20, 434-449.
    Clark, F.B. ,& Kamii, V.L.(1996). Identification of multiplicative thinking in children in grades 1-5. Journal for Research in Mathematics Education, 27, 41-51.
    Confrey, J.(1994).Splitting,similarity,and rate of change:A new approach to multiplication and exponential functions. In G.Harel & J.Confrey(Eds.), The development of multiplicative reasoning in the learning of mathematics, 291-330. Albany:State University of New York Press.
    Dickon, L. , Brown, M. , & Gibson, O. (1984). Children learning mathematics: A teacher’s guide to recent research. Oxford, Great Britain, England: Schools Council Publications.
    Fischbein, E.,Deri,M., Nello,M.S.,& Merino, M. S.(1985). The role of implicit models in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 16, 3-17.
    Greer, B.(1992). Multiplication and division as models of situations.In D. Grouws(Ed.), Handbook of research on mathematics teaching and learning(pp. 276-295). New York:Macmillan.
    Hart, K. (Ed.). (1981). Childred’s understanding of mathematics:11-16. London:John Murray. Hoffer, A. R. , Johnson, M. L. , Leinwand, S. J. , Lodholz, R. D. , Musser, G. L. , & Thoburn, T.(1991). Mathematics in action. New York: Macmillan/McGraw-Hill School Division.
    Kamii, C. , with Livingston, S.(1994). Young children continue to reinvent arithmetic, 3rd grade. New York: Teachers College Press.
    Kouba, V. L.(1989). Children’s solution strategies for equivalent set multiplication and division word problems. Journal for Research in Mathematics Education, 20, pp.147-158.
    McIntosh, A.(1979). Some Children and Some Multiplications.Mathematics Teaching, 87, 14-15.
    Mulligan, J. T.(1992). Children’s solutions to multiplication and division word problems: A longitudinal study. Mathematics Education Research Journal, 4(1), pp.24-41.
    Mulligan, J. T. & Mitchelmore, M. C.(1997). Young children’s intuitive models of multiplication and division. Journal for Research in Mathematics Education, 28(3), pp.309-330.
    Nesher, P.(1988). Multiplicative school word problems :Theoretical approaches and empirical findings. In J. Hiebert & M. Behr(Eds.), Number concepts and operations in the middle grades(pp.19-40). Hillsdale, NJ: Erlbaum.
    Sackur-Grisvard, C. & L’eonar, F.(1985). Intermediate Cognitive Organizations in the Process of Learning a Mathematical Concept: The Order of Positive Decimal Numbers. Cognition and Instruction, 2(2), 157-174.
    Schliemann, A. D. Araujo, C. Cassund`e, M. A. Macedo, S. & Nic`eas, L.(1998). Use of Multiplicative Commutativity by School Children and Street Sellers. Journal for Research in Mathematics Education, 29(4), pp.422-435.
    Schwartz, J.(1988). Intensive quantity and referent transforming arithmetic operations. In J. Hiebert & M. Behr(Eds.), Number concepts and operations in the middle grades(pp.41-52). Reston, VA: National Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
    Schmidt, S. & Weiser, W.(1995). Semantic structures of one-step word problems involving multiplication or division. Educational Studies in Mathematics, 28, 55-72.
    Usiskin, Z. ,& Bell, M.(1983): Applying arithmetic: A handbook of applications of arithmetic.Chicago: University of Chicago, Department of Education.
    Vergnaud, G.(1983). Multiplicative structures. In R. Lesh & M. Landau(Eds.). Acquisition of mathematics concepts and processes (pp.127-174). New York: Academic Press.
    Vergnaud, G.(1988). multiplicative structures. In J. Hiebert & M. Behr(Eds.), Number concepts and operations in the middle grades(pp.141-162). Hillsdale, NJ: Erlbaum.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE