簡易檢索 / 詳目顯示

研究生: 高健育
Kao, Chien Yu
論文名稱: 探討纖維母細胞生長因子第一型參與神經分化與多形性膠質母細胞瘤之自我更新的機制
FGF1 and regulation of FGF-1B transcriptional promoter- Implications for neuronal differentaition and regulation of Gliblastoma stem cells.
指導教授: 邱英明
Chiu, Ing Ming
汪宏達
Wang, Horng Dar
口試委員: 劉俊揚
Liou, Jun Yang
許益超
Hsu, Yi Chao
李華容
Li, Hua Jung
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 115
中文關鍵詞: 纖維母細胞生長因子第一型丙戊酸神經幹細胞人類多形性膠質母細胞瘤
外文關鍵詞: FGF1, Valproic acid, Neural stem cellsq, Glioblastoma
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 纖維母細胞生長因子第一型(FGF-1)在許多生物反應中扮演重要的角色,如細胞分化、傷口修復、血管新生、及組織生長等。FGF-1B 是人類FGF-1基因在腦部組織中主要產生的轉錄片段,先前的研究指出由FGF1-1B 啟動子的-540到 +31所驅動的GFP報導基因可以被用來偵測細胞內FGF-1的表現並且可應用於分離具有自我更新能力(self-renewal)神經幹細胞及神經前驅細胞。丙戊酸 (Valproic acid, VPA)是一種第一線稳定情绪的精神科用藥,先前研究顯示VPA具有保護神經細胞的能力,在臨床上常被用於治療躁鬱症(bipolar disorder)。在這個研究種,我們提出了幾個證據說明VPA具有活化FGF-1B啟動子的能力與其機制:(一) 處理VPA可以顯著提升細胞內FGF-1B mRNA的量; (二) 處理VPA會改變調控因子X (RFX) 聚合體與FGF-1B啟動子結合的能力並且FGF-1B啟動子附近的組蛋白H3的乙醯化; (三) 我們處裡其他種類的HDAC抑制劑,丁酸鈉 (Sodium Butyrate)或trichostatin A,其結果顯示HDAC抑制後會增加FGF-1B、調控因子X2與X3的表現; (四) GSK3抑制劑或GSK3 siRNA的處理也會增加FGF-1B啟動子的活性; (五) VPA的處理會增加胚胎幹細胞與神經幹細胞中FGF1B(+)細胞群往神經細胞分化的能力。此研究指出VPA透過抑制HDAC與GSK3來活化FGF-1B啟動子。更進一步,我們發現VPA促進神經分化時會伴隨Aurora A (AurA)激酶活性的降低,在這個研究中,我們進一步發現FGF1/FGFR的訊息傳遞參與調控AurA的基因表現與激酶活性,並且進一步影響人類多形性膠質母細胞瘤 (GBM) 與神經幹細胞的細胞自我更新。首先,在經過FGF1處理後,AurA的表現量會在GBM細胞中大量增加; 第二,我們利用流式細胞分選儀發現,F1BGFP(+)的GBM細胞中的AurA與FGFR的表現量會大於F1BGFP(-)的GBM細胞; 第三,處裡FGFR抑制劑會降低細胞中AurA激酶活性; 第四,當AurA激酶活性被抑制後,細胞形成神經球的能力會大幅降低同時伴隨神經分化能力的上升; 第五,流式細胞儀分析顯示,F1BGFP(+)的GBM細胞會表現神經幹細胞的表面標記; 最後,當AurA激酶活性被抑制後,在不同種類的神經幹細胞都會發現神經球形成能力降低的現像。我們結果顯示,FGF1/FGFR訊息傳遞會透過活化AurA來維持與穩定神經幹細胞與GBM幹細胞的幹細胞特性。


    Fibroblast growth factor 1 (FGF1) binds and activates FGF receptors, thereby regulating cell proliferation and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven SV40 T antigen has been shown to result in tumorigenesis in the brains of transgenic mice. FGF-1B promoter (-540 to +31)-driven green fluorescent protein (F1BGFP) has also been used in isolating neural stem cells (NSCs) with self-renewal and multipotency from developing and adult mouse brains. Valproic acid (VPA) is the primary mood-stabilizing drug to exert neuroprotective effects and to treat bipolar disorder in clinic. In this study, we provide several lines of evidence to demonstrate the underlying mechanisms of VPA in activating FGF-1B promoter activity: (i) VPA significantly increased the FGF-1B mRNA expression and the percentage of F1BGFP(+) cells; (ii) the increase of F1BGFP expression by VPA involves changes of RFX1-3 transcriptional complexes and the increase of histone H3 acetylation on the 18-bp cis-element of FGF-1B promoter; (iii) treatments of other HDAC inhibitors, sodium butyrate and trichostatin A, significantly increased the expression levels of FGF-1B, RFX2 and RFX3 transcripts; (iv) treatments of GSK-3 inhibitor, lithium, or GSK-3 siRNAs also significantly activated FGF-1B promoter; (v) VPA specifically enhanced neuronal differentiation in F1BGFP(+)NSPCs rather than GFP(-) cells. This study suggested, for the first time, that VPA activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities. Furthermore, valproic acid not only induces neuronal differentiation of F1BGFP(+) gliblastoma (GBM) cells but also inhibits Aurora A (AurA) activation. Hence it would be interesting to further study the role of AurA in regulating NSPCs behavior. In this study, six lines of evidence were provided to demonstrate that FGF1/FGFR signaling is implicated in the expression of Aurora A (AurA) and the activation of its kinase domain (Thr288 phosphorylation) in the maintenance of GBM cells and NSPCs. First, treatment of FGF1 increases AurA expression in human GBM cell lines. Second, using fluorescence-activated cell sorting, we observed that F1BGFP reporter facilitates the isolation of F1BGFP(+) GBM cells with higher expression levels of FGFR and AurA. Third, both FGFR inhibitor (SU5402) and AurA inhibitor (VX680) could down-regulate F1BGFP-dependent AurA activity. Fourth, inhibition of AurA activity by AurA inhibitor VX680 not only reduce neurosphere formation but also induce neuronal differentiation of F1BGFP(+) GBM cells. Fifth, flow cytometric analyses demonstrated that F1BGFP(+) GBM cells possessed different NSC cell surface markers. Finally, inhibition of AurA by VX680 reduced the neurosphere formation of different types of NSCs. Our results showed that activation of AurA kinase through FGF1/FGFR signaling axis sustains the stem cell characteristics of GBM cells.

    I Introduction 1 I.1 Fibroblast Growth Factor Signaling 1 I.1.1 The Fibroblast Growth Factor Superfamily 1 I.1.2 FGF Signaling Pathways 2 I.1.3 Role of FGF Signaling in Self-Renewal of Neural Stem Cells 2 I.1.4 Role of FGFR Signaling in Tumor Development 3 I.2 FGF1 5 I.2.1 Role of FGF1 in neurogenesis and tumor development 5 I.2.2 Gene Structure of FGF1 6 I.2.3 Regulation of FGF-1B Promoter Activity 7 I.2.4 The F1BGFP Reporter and Its Application in Isolation of Neural Stem/Progenitor Cells (NSPCs) 8 I.3 Mood Disorder 9 I.3.1 The Dysregulation of Neurogenesis in Mood Disorder 9 I.3.2 Treatments for Mood Disorders 9 I.3.3 The Dysregulation of FGF in Mood Disorder 11 I.4 Aurora kinase A 11 I.4.1 Role of AurA in Glioblastoma and Self-Renewal of Stem Cells. 11 I.4.2 Regulation of AurA Expression 14 I.4.3 Activation mechanism of AurA 16 I.5 The aims of this study 16 II Materials and Methods 18 II.1 Cell Culture 18 II.1 F1BGFP reporter and establishment of F1BGFP(+) GBM cells 19 II.2 Neurosphere culture and differentiation assay 20 II.3 Immunostaining 20 II.4 Electrophoretic Mobility Shift Assay (EMSA) 21 II.5 Treatment of VPA, LiCl or FGFR inhibitors 21 II.6 RNAi Experiments 22 II.7 Reverse Transcription and Quantitative polymerase chain reaction (Q-PCR) ……………………………………………………………………………..22 II.8 Western Blot Analyses 23 II.9 Chromatin Immunoprecipitation (ChIP) 25 II.10 Maintenance and neuronal differentiation of mouse embryonic stem cells 26 II.11 Cell proliferation assay 26 II.12 Neurosphere formation assay 27 II.13 Flow Cytometry and Fluorescence Activated Cell Sorting (FACS) 27 II.14 Statistical Analyses 28 III Results 29 III.1 VPA treatment up-regulated the expression of F1BGFP in both FGF-1B positive and negative glioblastoma cell lines 29 III.2 VPA treatment differentially regulated RFX transcription factors binding to 18-bp cis-element of FGF-1B promoter 30 III.3 Activation of FGF-1B promoter is regulated by HDAC activities 32 III.4 FGF-1B promoter is regulated by GSK-3 activities 34 III.5 VPA treatment enhanced neuronal differentiation of F1BGFP(+) NSPCs in vitro ……………………………………………………………………………..35 III.6 Effects of VPA on the expression levels of ASCL1, BRN2, MYT1L and NEUROD1 transcription factors between F1BGFP(+) and (-) cells 37 III.7 AurA inhibition stimulates neuronal differentiation 38 III.8 FGF1 signaling induced the expression of AurA kinase in human GBM cell lines. 40 III.9 FGF-1B promoter (-540 to +31)-driven green fluorescent protein (F1BGFP) facilitates the isolation of F1BGFP(+) GBM cells with higher levels of FGFR and AurA activation 43 III.10 F1BGFP reporter facilitates the isolation of NSPC-like cells with higher AurA kinase activation, self-renewal capacity, and multipotency from human GBM tissue ……………………………………………………………………………..46 III.11 Inhibition of AurA activation reduced the self-renewal of human GBM cells, mouse ESCs, mouse ESC-derived NSCs, and primary mouse brain NSPCs 46 IV Discussion 47 V Conclusion 60

    1. Bottcher RT, Niehrs C: Fibroblast growth factor signaling during early vertebrate development. Endocr Rev 2005, 26(1):63-77.
    2. Itoh N, Ornitz DM: Evolution of the Fgf and Fgfr gene families. Trends Genet 2004, 20(11):563-569.
    3. Peters DE, Szabo R, Friis S, Shylo NA, Uzzun Sales K, Holmbeck K, Bugge TH: The membrane-anchored serine protease prostasin (CAP1/PRSS8) supports epidermal development and postnatal homeostasis independent of its enzymatic activity. J Biol Chem 2014, 289(21):14740-14749.
    4. Mason I: Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 2007, 8(8):583-596.
    5. Ornitz DM: FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 2000, 22(2):108-112.
    6. Senoo M: Epidermal Stem Cells in Homeostasis and Wound Repair of the Skin. Advances in wound care 2013, 2(6):273-282.
    7. Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S: Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta 2014, 1841(3):463-473.
    8. Furdui CM, Lew ED, Schlessinger J, Anderson KS: Autophosphorylation of FGFR1 kinase is mediated by a sequential and precisely ordered reaction. Mol Cell 2006, 21(5):711-717.
    9. Holzmann K, Grunt T, Heinzle C, Sampl S, Steinhoff H, Reichmann N, Kleiter M, Hauck M, Marian B: Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer. Journal of Nucleic Acids 2012, 2012:12.
    10. Hu S, Cucinotta FA: Epidermal homeostasis and radiation responses in a multiscale tissue modeling framework. Integr Biol (Camb) 2014, 6(1):76-89.
    11. Murphy M, Drago J, Bartlett PF: Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J Neurosci Res 1990, 25(4):463-475.
    12. Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ: Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 2000, 19(29):3309-3320.
    13. Eswarakumar VP, Lax I, Schlessinger J: Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005, 16(2):139-149.
    14. Turner N, Grose R: Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010, 10(2):116-129.
    15. Niessen MT, Scott J, Zielinski JG, Vorhagen S, Sotiropoulou PA, Blanpain C, Leitges M, Niessen CM: aPKClambda controls epidermal homeostasis and stem cell fate through regulation of division orientation. J Cell Biol 2013, 202(6):887-900.
    16. Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J: fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 1994, 8(24):3032-3044.
    17. Thisse B, Thisse C: Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 2005, 287(2):390-402.
    18. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M: Growth factors and cytokines in wound healing. Wound Repair Regen 2008, 16(5):585-601.
    19. Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M: Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005, 16(2):159-178.
    20. Sutterlin T, Huber S, Dickhaus H, Grabe N: Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems. Bioinformatics 2009, 25(16):2057-2063.
    21. Khavari TA, Rinn J: Ras/Erk MAPK signaling in epidermal homeostasis and neoplasia. Cell Cycle 2007, 6(23):2928-2931.
    22. Ito Y, Sarkar P, Mi Q, Wu N, Bringas P, Jr., Liu Y, Reddy S, Maxson R, Deng C, Chai Y: Overexpression of Smad2 reveals its concerted action with Smad4 in regulating TGF-beta-mediated epidermal homeostasis. Dev Biol 2001, 236(1):181-194.
    23. Breitkreutz D, Stark HJ, Mirancea N, Tomakidi P, Steinbauer H, Fusenig NE: Integrin and basement membrane normalization in mouse grafts of human keratinocytes--implications for epidermal homeostasis. Differentiation; research in biological diversity 1997, 61(3):195-209.
    24. Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A, Akhurst RJ: Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 1995, 9(8):945-955.
    25. Budtz PE: Epidermal tissue homeostasis. III. Effect of hydrocortisone on cell pool size, cell birth rate and cell loss in normal toads and in toads deprived of the pars distalis of the pituitary gland. Cell and tissue kinetics 1988, 21(4):259-270.
    26. Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM: Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. The Journal of neuroscience 2004, 24(27):6057-6069.
    27. Williams ML, Feingold KR, Grubauer G, Elias PM: Ichthyosis induced by cholesterol-lowering drugs. Implications for epidermal cholesterol homeostasis. Archives of dermatology 1987, 123(11):1535-1538.
    28. Budtz PE: Expectations of human epidermal kinetic homeostasis. Br J Dermatol 1986, 114(6):645-650.
    29. Budtz PE: Epidermal tissue homeostasis. II. Cell pool size, cell birth rate and cell loss in toads deprived of the pars distalis of the pituitary gland. Cell and tissue kinetics 1985, 18(5):533-542.
    30. Budtz PE: Epidermal tissue homeostasis. I. Cell pool size, cell birth rate and cell loss by moulting in the intact toad, Bufo bufo. Cell and tissue kinetics 1985, 18(5):521-532.
    31. O'Shaughnessy KD, De La Garza M, Roy NK, Mustoe TA: Homeostasis of the epidermal barrier layer: a theory of how occlusion reduces hypertrophic scarring. Wound Repair Regen 2009, 17(5):700-708.
    32. Dodd ME, Hatzold J, Mathias JR, Walters KB, Bennin DA, Rhodes J, Kanki JP, Look AT, Hammerschmidt M, Huttenlocher A: The ENTH domain protein Clint1 is required for epidermal homeostasis in zebrafish. Development 2009, 136(15):2591-2600.
    33. Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C: Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 2009, 229(6):1171-1179.
    34. Blanpain C, Fuchs E: Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009, 10(3):207-217.
    35. Denda M: Methodology to improve epidermal barrier homeostasis: how to accelerate the barrier recovery? International journal of cosmetic science 2009, 31(2):79-86.
    36. Golonzhka O, Liang X, Messaddeq N, Bornert JM, Campbell AL, Metzger D, Chambon P, Ganguli-Indra G, Leid M, Indra AK: Dual role of COUP-TF-interacting protein 2 in epidermal homeostasis and permeability barrier formation. J Invest Dermatol 2009, 129(6):1459-1470.
    37. Antsiferova M, Klatte JE, Bodo E, Paus R, Jorcano JL, Matzuk MM, Werner S, Kogel H: Keratinocyte-derived follistatin regulates epidermal homeostasis and wound repair. Lab Invest 2009, 89(2):131-141.
    38. Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA et al: Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 2009, 187(1):91-100.
    39. Frank CL, Tsai LH: Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity. Neuron 2009, 62(3):312-326.
    40. Wiedemann C: Death despite survival. Nat Rev Neurosci 2007, 8(7):496-496.
    41. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM: Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 2004, 89(6):1358-1367.
    42. Takai N, Narahara H: Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis. Curr Med Chem 2007, 14(24):2548-2553.
    43. Takai N, Kawamata N, Gui D, Said JW, Miyakawa I, Koeffler HP: Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis. Cancer 2004, 101(12):2760-2770.
    44. Carmena M, Earnshaw WC: The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003, 4(11):842-854.
    45. Bono F, De Smet F, Herbert C, De Bock K, Georgiadou M, Fons P, Tjwa M, Alcouffe C, Ny A, Bianciotto M et al: Inhibition of Tumor Angiogenesis and Growth by a Small-Molecule Multi-FGF Receptor Blocker with Allosteric Properties. Cancer Cell 2013, 23(4):477-488.
    46. Ornitz D, Xu J, Colvin J, McEwen D, MacArthur C, Coulier F, Gao G, Goldfarb M: Receptor specificity of the fibroblast growth factor family. Journal of Biological Chemistry 1996, 271(25):15292.
    47. Chiu IM, Touhalisky K, Baran C: Multiple controlling mechanisms of FGF1 gene expression through multiple tissue-specific promoters. Prog Nucleic Acid Res Mol Biol 2001, 70:155-174.
    48. Malecki J, Wesche J, Skjerpen C, Wiedlocha A, Olsnes S: Translocation of FGF-1 and FGF-2 across vesicular membranes occurs during G1-phase by a common mechanism. Molecular biology of the cell 2004, 15(2):801.
    49. Prudovsky I, Mandinova A, Soldi R, Bagala C, Graziani I, Landriscina M, Tarantini F, Duarte M, Bellum S, Doherty H et al: The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 2003, 116(Pt 24):4871-4881.
    50. Bouleau S, Parvu-Ferecatu I, Rodriguez-Enfedaque A, Rincheval V, Grimal H, Mignotte B, Vayssiere J, Renaud F: Fibroblast Growth Factor 1 inhibits p53-dependent apoptosis in PC12 cells. Apoptosis 2007, 12(8):1377-1387.
    51. Fu X, Li X, Wang T, Cheng B, Sheng Z: Enhanced anti-apoptosis and gut epithelium protection function of acidic fibroblast growth factor after cancelling of its mitogenic activity. World J Gastroenterol 2004, 10(24):3590-3596.
    52. Guillonneau X, Regnier-Ricard F, Dupuis C, Courtois Y, Mascarelli F: FGF2-stimulated release of endogenous FGF1 is associated with reduced apoptosis in retinal pigmented epithelial cells. Experimental cell research 1997, 233(1):198-206.
    53. Wu DK, Maciag T, de Vellis J: Regulation of neuroblast proliferation by hormones and growth factors in chemically defined medium. J Cell Physiol 1988, 136(2):367-372.
    54. Lipton SA, Wagner JA, Madison RD, D'Amore PA: Acidic fibroblast growth factor enhances regeneration of processes by postnatal mammalian retinal ganglion cells in culture. Proc Natl Acad Sci U S A 1988, 85(7):2388-2392.
    55. Lin WF, Chen CJ, Chang YJ, Chen SL, Chiu IM, Chen L: SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal 2009, 21(7):1060-1072.
    56. Zakrzewska M, Marcinkowska E, Wiedlocha A: FGF-1: from biology through engineering to potential medical applications. Critical Reviews in Clinical Laboratory Sciences 2008, 45(1):91-135.
    57. Lee DC, Hsu YC, Chung YF, Hsiao CY, Chen SL, Chen MS, Lin HK, Chiu IM: Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains. Mol Cell Neurosci 2009, 41(3):348-363.
    58. Hsu YC, Liao WC, Kao CY, Chiu IM: Regulation of FGF1 gene promoter through transcription factor RFX1. The Journal of biological chemistry 2010, 285(18):13885-13895.
    59. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow-Anpongkul N, Flavell RA, Lu B, Ming GL, Song H: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009, 323(5917):1074-1077.
    60. Mori S, Tran V, Nishikawa K, Kaneda T, Hamada Y, Kawaguchi N, Fujita M, Saegusa J, Takada YK, Matsuura N et al: A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis. PLoS One 2013, 8(2):e57927.
    61. Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G: Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 2000, 60(24):7163-7169.
    62. Basilico C, Moscatelli D: The FGF family of growth factors and oncogenes. Advances in cancer research 1992, 59:115-165.
    63. Bouleau S, Grimal H, Rincheval V, Godefroy N, Mignotte B, Vayssiere JL, Renaud F: FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene 2005, 24(53):7839-7849.
    64. Mori S, Tran V, Nishikawa K, Kaneda T, Hamada Y, Kawaguchi N, Fujita M, Takada YK, Matsuura N, Zhao M et al: A Dominant-Negative FGF1 Mutant (the R50E Mutant) Suppresses Tumorigenesis and Angiogenesis. PLoS ONE 2013, 8(2):e57927.
    65. Birrer MJ, Johnson ME, Hao K, Wong KK, Park DC, Bell A, Welch WR, Berkowitz RS, Mok SC: Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol 2007, 25(16):2281-2287.
    66. Myers R, Payson R, Chotani M, Deaven L, Chiu I: Gene structure and differential expression of acidic fibroblast growth factor mRNA: identification and distribution of four different transcripts. Oncogene 1993, 8(2):341.
    67. Chotani MA, Touhalisky K, Chiu M: The small GTPases Ras, Rac, and Cdc42 transcriptionally regulate expression of human fibroblast growth factor 1. Journal of Biological Chemistry 2000, 275(39):30432-30438.
    68. Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P, Whyte J, He M, Juguilon H, Yin YQ, Phillips CT et al: A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 2012, 485(7398):391-394.
    69. Conte C, Ainaoui N, Delluc-Clavieres A, Khoury MP, Azar R, Pujol F, Martineau Y, Pyronnet S, Prats AC: Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. Nucleic Acids Res 2009, 37(16):5267-5278.
    70. Myers RL, Chedid M, Tronick SR, Chiu IM: Different fibroblast growth factor 1 (FGF-1) transcripts in neural tissues, glioblastomas and kidney carcinoma cell lines. Oncogene 1995, 11(4):785-789.
    71. Chiu IM, Touhalisky K, Liu Y, Yates A, Frostholm A: Tumorigenesis in transgenic mice in which the SV40 T antigen is driven by the brain-specific FGF1 promoter. Oncogene 2000, 19(54):6229-6239.
    72. Chen MS, Lin HK, Chiu H, Lee DC, Chung YF, Chiu IM: Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B-GFP transgenic mice. Dev Neurobiol 2015, 75(3):232-248.
    73. Myers RL, Ray SK, Eldridge R, Chotani MA, Chiu IM: Functional characterization of the brain-specific FGF-1 promoter, FGF-1.B. J Biol Chem 1995, 270(14):8257-8266.
    74. Hsu YC, Lee DC, Chen SL, Liao WC, Lin JW, Chiu WT, Chiu IM: Brain-specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with self-renewal and multipotent capacities. Dev Dyn 2009, 238(2):302-314.
    75. Ray S, Yang X, Chiu I: Transcriptional activation of fibroblast growth factor 1. B promoter is mediated through an 18-base pair cis-acting element. Journal of Biological Chemistry 1997, 272(11):7546.
    76. Hsu YC, Kao CY, Chung YF, Chen MS, Chiu IM: Ciliogenic RFX transcription factors regulate FGF1 gene promoter. J Cell Biochem 2012, 113(7):2511-2522.
    77. Li X, Frye MA, Shelton RC: Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology 2012, 37(1):77-101.
    78. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA: A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011, 12(10):585-601.
    79. Kapczinski F, Frey BN, Kauer-Sant'Anna M, Grassi-Oliveira R: Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. Expert Rev Neurother 2008, 8(7):1101-1113.
    80. Hajek T, Kopecek M, Hoschl C, Alda M: Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. Journal of psychiatry & neuroscience : JPN 2012, 37(5):333-343.
    81. Kino T: Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders. Frontiers in physiology 2015, 6.
    82. Egeland M, Zunszain PA, Pariante CM: Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 2015, 16(4):189-200.
    83. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E: Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 1998, 95(6):3168-3171.
    84. Czéh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Müller MB, Toschi N, Fuchs E, Keck ME: Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biological psychiatry 2002, 52(11):1057-1065.
    85. Lucassen PJ, Oomen CA, Naninck EF, Fitzsimons CP, van Dam AM, Czeh B, Korosi A: Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harbor perspectives in biology 2015, 7(9).
    86. Hill AS, Sahay A, Hen R: Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors. Neuropsychopharmacology 2015, 40(10):2368-2378.
    87. Kazantsev AG, Thompson LM: Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery 2008, 7(10):854-868.
    88. Cade JF: Lithium salts in the treatment of psychotic excitement. 1949. Bulletin of the World Health Organization 2000, 78(4):518-520.
    89. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001, 276(39):36734-36741.
    90. Werstuck GH, Kim AJ, Brenstrum T, Ohnmacht SA, Panna E, Capretta A: Examining the correlations between GSK-3 inhibitory properties and anti-convulsant efficacy of valproate and valproate-related compounds. Bioorg Med Chem Lett 2004, 14(22):5465-5467.
    91. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS: Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Journal of Biological Chemistry 2003, 278(35):33067-33077.
    92. Stambolic V, Ruel L, Woodgett JR: Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Current Biology 1996, 6(12):1664-1669.
    93. Yasuda S, Liang M, Marinova Z, Yahyavi A, Chuang D: The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Molecular psychiatry 2007, 14(1):51-59.
    94. Higashi M, Maruta N, Bernstein A, Ikenaka K, Hitoshi S: Mood stabilizing drugs expand the neural stem cell pool in the adult brain through activation of notch signaling. Stem Cells 2008, 26(7):1758-1767.
    95. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004, 101(47):16659-16664.
    96. Yu IT, Park JY, Kim SH, Lee J, Kim YS, Son H: Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 2009, 56(2):473-480.
    97. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A: Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000, 47(12):1043-1049.
    98. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, Post RM: Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 1995, 6(14):1853-1856.
    99. Rapinesi C, Del Casale A, Serata D, Caccia F, Di Pietro S, Scatena P, Carbonetti P, Fensore C, Angeletti G, Tatarelli R et al: Electroconvulsive therapy in a man with comorbid severe obesity, binge eating disorder, and bipolar disorder. The journal of ECT 2013, 29(2):142-144.
    100. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A: Increased neurogenesis in a model of electroconvulsive therapy. Biological Psychiatry 2000, 47(12):1043-1049.
    101. Reshetukha T, Alavi N, Milev R: Maintenance Repetitive Transcranial Magnetic Stimulation (RTMS) in Relapse Prevention of Depression. European Psychiatry 2015, 30, Supplement 1:836.
    102. Zhang Y, Mao R-R, Chen Z-F, Tian M, Tong D-L, Gao Z-R, Huang M, Li X, Xu X, Zhou W-H et al: Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders. Molecular Brain 2014, 7:11-11.
    103. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD et al: Dysregulation of the fibroblast growth factor system in major depression. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(43):15506-15511.
    104. Jungerius B, Hoogendoorn M, Bakker S, Van't Slot R, Bardoel A, Ophoff R, Wijmenga C, Kahn R, Sinke R: An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Molecular psychiatry 2007, 13(11):1060-1068.
    105. Maragnoli ME, Fumagalli F, Gennarelli M, Racagni G, Riva MA: Fluoxetine and olanzapine have synergistic effects in the modulation of fibroblast growth factor 2 expression within the rat brain. Biological Psychiatry 2004, 55(11):1095-1102.
    106. Marumoto T, Zhang D, Saya H: Aurora-A - a guardian of poles. Nat Rev Cancer 2005, 5(1):42-50.
    107. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S: Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998, 20(2):189-193.
    108. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A et al: VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 2004, 10(3):262-267.
    109. Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA, Fiorica JV, Nicosia SV, Cheng JQ: Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res 2003, 9(4):1420-1426.
    110. Barton VN, Foreman NK, Donson AM, Birks DK, Handler MH, Vibhakar R: Aurora kinase A as a rational target for therapy in glioblastoma. J Neurosurg Pediatr 2010, 6(1):98-105.
    111. Samaras V, Stamatelli A, Samaras E, Arnaoutoglou C, Arnaoutoglou M, Stergiou I, Konstantopoulou P, Varsos V, Karameris A, Barbatis C: Comparative immunohistochemical analysis of aurora-A and aurora-B expression in human glioblastomas. Associations with proliferative activity and clinicopathological features. Pathology, research and practice 2009, 205(11):765-773.
    112. Clarke J, Butowski N, Chang S: Recent advances in therapy for glioblastoma. Archives of neurology 2010, 67(3):279-283.
    113. Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H, Kabuubi P, Ayers-Ringler J, Rabbitt J, Page M et al: Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 2009, 27(4):579-584.
    114. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007, 67(9):4010-4015.
    115. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004, 64(19):7011-7021.
    116. Gilbertson RJ, Rich JN: Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007, 7(10):733-736.
    117. Cho DY, Lin SZ, Yang WK, Lee HC, Hsu DM, Lin HL, Chen CC, Liu CL, Lee WY, Ho LH: Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 2013, 22(4):731-739.
    118. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444(7120):756-760.
    119. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS: Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Molecular cancer 2006, 5:67.
    120. Crane R, Gadea B, Littlepage L, Wu H, Ruderman JV: Aurora A, meiosis and mitosis. Biol Cell 2004, 96(3):215-229.
    121. Fukuda T, Mishina Y, Walker MP, DiAugustine RP: Conditional transgenic system for mouse aurora a kinase: degradation by the ubiquitin proteasome pathway controls the level of the transgenic protein. Mol Cell Biol 2005, 25(12):5270-5281.
    122. Littlepage LE, Ruderman JV: Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes & development 2002, 16(17):2274-2285.
    123. Lee DF, Su J, Ang YS, Carvajal-Vergara X, Mulero-Navarro S, Pereira CF, Gingold J, Wang HL, Zhao R, Sevilla A et al: Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling. Cell Stem Cell 2012, 11(2):179-194.
    124. Wirtz-Peitz F, Nishimura T, Knoblich JA: Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 2008, 135(1):161-173.
    125. Tanaka M, Ueda A, Kanamori H, Ideguchi H, Yang J, Kitajima S, Ishigatsubo Y: Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1. J Biol Chem 2002, 277(12):10719-10726.
    126. Udayakumar TS, Belakavadi M, Choi KH, Pandey PK, Fondell JD: Regulation of Aurora-A kinase gene expression via GABP recruitment of TRAP220/MED1. J Biol Chem 2006, 281(21):14691-14699.
    127. Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A: AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene 2006, 25(35):4831-4839.
    128. Wu CC, Yang TY, Yu CT, Phan L, Ivan C, Sood AK, Hsu SL, Lee MH: p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle 2012, 11(18):3433-3442.
    129. Lai CH, Tseng JT, Lee YC, Chen YJ, Lee JC, Lin BW, Huang TC, Liu YW, Leu TH, Liu YW et al: Translational up-regulation of Aurora-A in EGFR-overexpressed cancer. J Cell Mol Med 2010, 14(6b):1520-1531.
    130. Dobson T, Chen J, Krushel LA: Dysregulating IRES-dependent translation contributes to over-expression of the Aurora A kinase onco-protein. Molecular cancer research : MCR 2013, 11(8):887-900.
    131. Floyd S, Pines J, Lindon C: APC/CCdh1 Targets Aurora Kinase to Control Reorganization of the Mitotic Spindle at Anaphase. Current Biology 2008, 18(21):1649-1658.
    132. Kitajima S, Kudo Y, Ogawa I, Tatsuka M, Kawai H, Pagano M, Takata T: Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer. PLoS One 2007, 2(9):e944.
    133. Tsunematsu T, Arakaki R, Yamada A, Ishimaru N, Kudo Y: The Non-Canonical Role of Aurora-A in DNA Replication. Frontiers in oncology 2015, 5:187.
    134. Giubettini M, Asteriti IA, Scrofani J, De Luca M, Lindon C, Lavia P, Guarguaglini G: Control of Aurora-A stability through interaction with TPX2. J Cell Sci 2011, 124(Pt 1):113-122.
    135. Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J, Prigent C, Zheng Y: A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 2003, 5(3):242-248.
    136. Katayama H, Zhou H, Li Q, Tatsuka M, Sen S: Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem 2001, 276(49):46219-46224.
    137. Bayliss R, Sardon T, Vernos I, Conti E: Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 2003, 12(4):851-862.
    138. Eyers PA, Erikson E, Chen LG, Maller JL: A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 2003, 13(8):691-697.
    139. Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho Y-J, Kern D: Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. eLife 2014, 3:e02667.
    140. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG et al: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001, 20(24):6969-6978.
    141. De Sarno P, Li X, Jope RS: Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 2002, 43(7):1158-1164.
    142. Abel T, Zukin RS: Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current opinion in pharmacology 2008, 8(1):57-64.
    143. Polter A, Beurel E, Yang S, Garner R, Song L, Miller CA, Sweatt JD, McMahon L, Bartolucci AA, Li X: Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology 2010, 35(8):1761-1774.
    144. Wada A: Lithium and Neuropsychiatric Therapeutics: Neuroplasticity via Glycogen Synthase Kinase-3. BETA.,. BETA.-Catenin, and Neurotrophin Cascades. Journal of pharmacological sciences 2009, 110(1):14-28.
    145. Chen G, Huang LD, Jiang YM, Manji HK: The Mood‐Stabilizing Agent Valproate Inhibits the Activity of Glycogen Synthase Kinase‐3. Journal of neurochemistry 1999, 72(3):1327-1330.
    146. Gaspard N, Bouschet T, Herpoel A, Naeije G, van den Ameele J, Vanderhaeghen P: Generation of cortical neurons from mouse embryonic stem cells. Nat Protoc 2009, 4(10):1454-1463.
    147. Juliandi B, Abematsu M, Sanosaka T, Tsujimura K, Smith A, Nakashima K: Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid. Neuroscience research 2012, 72(1):23-31.
    148. Pruszak J, Ludwig W, Blak A, Alavian K, Isacson O: CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells 2009, 27(12):2928-2940.
    149. Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA: CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 2007, 67(12):5727-5736.
    150. Hur EM, Zhou FQ: GSK3 signalling in neural development. Nature Reviews Neuroscience 2010, 11(8):539-551.
    151. Chen CW, Liu CS, Chiu IM, Shen SC, Pan HC, Lee KH, Lin SZ, Su HL: The signals of FGFs on the neurogenesis of embryonic stem cells. Journal of biomedical science 2010, 17(1):33.
    152. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G: Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. The Journal of neuroscience 2004, 24(29):6590-6599.
    153. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC et al: Induction of human neuronal cells by defined transcription factors. Nature 2011, 476(7359):220-223.
    154. Buttitta LA, Edgar BA: Mechanisms controlling cell cycle exit upon terminal differentiation. Curr Opin Cell Biol 2007, 19(6):697-704.
    155. Yoshikawa K: Cell cycle regulators in neural stem cells and postmitotic neurons. Neuroscience research 2000, 37(1):1-14.
    156. Berendsen S, Broekman M, Seute T, Snijders T, van Es C, de Vos F, Regli L, Robe P: Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs 2012, 21(9):1391-1415.
    157. Suh JM, Jonker JW, Ahmadian M, Goetz R, Lackey D, Osborn O, Huang Z, Liu W, Yoshihara E, van Dijk TH et al: Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 2014, 513(7518):436-439.
    158. Lehman NL, O'Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM, Schultz LR, Williams CJ, Mikkelsen T, Brown SL et al: Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 2012, 11(3):489-502.
    159. Haley EM, Kim Y: The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett 2014, 346(1):1-5.
    160. Myers RL, Payson RA, Chotani MA, Deaven LL, Chiu IM: Gene structure and differential expression of acidic fibroblast growth factor mRNA: identification and distribution of four different transcripts. Oncogene 1993, 8(2):341-349.
    161. Huang Y-H, Wu C-C, Chou C-K, Huang C-YF: A Translational Regulator, PUM2, Promotes Both Protein Stability and Kinase Activity of Aurora-A. PLoS ONE 2011, 6(5):e19718.
    162. Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255(5052):1707-1710.
    163. Vescovi AL, Reynolds BA, Fraser DD, Weiss S: bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 1993, 11(5):951-966.
    164. Liu JW, Hsu YC, Kao CY, Su HL, Chiu IM: Leukemia inhibitory factor-induced Stat3 signaling suppresses fibroblast growth factor 1-induced Erk1/2 activation to inhibit the downstream differentiation in mouse embryonic stem cells. Stem Cells Dev 2013, 22(8):1190-1197.
    165. Sun J, Ming G, Song H: Epigenetic regulation of neurogenesis in the adult mammalian brain. European Journal of Neuroscience 2011, 33(6):1087-1093.
    166. Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN: Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proceedings of the National Academy of Sciences 2009, 106(19):7876-7881.
    167. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH: Recovery of learning and memory is associated with chromatin remodelling. Nature 2007, 447(7141):178-182.
    168. Ma DK, Marchetto MC, Guo JU, Ming G, Gage FH, Song H: Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience 2010, 13(11):1338-1344.
    169. Harrison MRM, Georgiou AS, Spaink HP, Cunliffe VT: The epigenetic regulator Histone Deacetylase 1 promotes transcription of a core neurogenic programme in zebrafish embryos. BMC genomics 2011, 12(1):24.
    170. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT: Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 2009, 32(11):591-601.
    171. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM: Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. Journal of Pharmacology and Experimental Therapeutics 2007, 321(3):892-901.
    172. Kim HJ, Leeds P, Chuang DM: The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. Journal of neurochemistry 2009, 110(4):1226-1240.
    173. Chen YC, Lee DC, Tsai TY, Hsiao CY, Liu JW, Kao CY, Lin HK, Chen HC, Palathinkal TJ, Pong WF et al: Induction and regulation of differentiation in neural stem cells on ultra-nanocrystalline diamond films. Biomaterials 2010, 31(21):5575-5587.
    174. Jin N, Kovacs AD, Sui Z, Dewhurst S, Maggirwar SB: Opposite effects of lithium and valproic acid on trophic factor deprivation-induced glycogen synthase kinase-3 activation, c-Jun expression and neuronal cell death. Neuropharmacology 2005, 48(4):576-583.
    175. Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM: Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 2008, 28(10):2576-2588.
    176. Aubry JM, Schwald M, Ballmann E, Karege F: Early effects of mood stabilizers on the Akt/GSK-3beta signaling pathway and on cell survival and proliferation. Psychopharmacology 2009, 205(3):419-429.
    177. Kozlovsky N, Amar S, Belmaker RH, Agam G: Psychotropic drugs affect Ser9-phosphorylated GSK-3 beta protein levels in rodent frontal cortex. The international journal of neuropsychopharmacology / official scientific journal of the Collegium Internationale Neuropsychopharmacologicum (CINP) 2006, 9(3):337-342.
    178. McDERMOTT KL, RAGHUPATHI R, FERNANDEZ SC, SAATMAN KE, PROTTER AA, FINKLESTEIN SP, SINSON G, SMITH DH, McINTOSH TK: Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasagittal fluid percussion brain injury in the rat. Journal of neurotrauma 1997, 14(4):191-200.
    179. Valoušková V, Gschanes A: Effects of NGF, b-FGF, and cerebrolysin on water maze performance and on motor activity of rats: short-and long-term study. Neurobiology of learning and memory 1999, 71(2):132-149.
    180. Turner CA, Watson SJ, Akil H: The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012, 76(1):160-174.
    181. Turner CA, Gula EL, Taylor LP, Watson SJ, Akil H: Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain research 2008, 1224:63-68.
    182. Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang M, Pow-Anpongkul N, Flavell RA, Lu B, Ming G, Song H: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009, 323(5917):1074-1077.
    183. Xu Y, Sengupta PK, Seto E, Smith BD: Regulatory factor for X-box family proteins differentially interact with histone deacetylases to repress collagen alpha2(I) gene (COL1A2) expression. J Biol Chem 2006, 281(14):9260-9270.
    184. Loilome W, Joshi AD, ap Rhys CM, Piccirillo S, Vescovi AL, Gallia GL, Riggins GJ: Glioblastoma cell growth is suppressed by disruption of Fibroblast Growth Factor pathway signaling. J Neurooncol 2009, 94(3):359-366.
    185. Beenken A, Mohammadi M: The FGF family: biology, pathophysiology and therapy. Nature reviews Drug discovery 2009, 8(3):235-253.
    186. LaVallee TM, Prudovsky IA, McMahon GA, Hu X, Maciag T: Activation of the MAP kinase pathway by FGF-1 correlates with cell proliferation induction while activation of the Src pathway correlates with migration. J Cell Biol 1998, 141(7):1647-1658.
    187. Hayrabedyan S, Kyurkchiev S, Kehayov I: FGF-1 and S100A13 possibly contribute to angiogenesis in endometriosis. Journal of reproductive immunology 2005, 67(1-2):87-101.
    188. Zakrzewska M, Marcinkowska E, Wiedlocha A: FGF-1: from biology through engineering to potential medical applications. Crit Rev Clin Lab Sci 2008, 45(1):91-135.
    189. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, De Maria R: Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 2006, 13(7):1238-1241.
    190. Zhang D, Shimizu T, Araki N, Hirota T, Yoshie M, Ogawa K, Nakagata N, Takeya M, Saya H: Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene 2008, 27(31):4305-4314.
    191. Jantscher F, Pirker C, Mayer CE, Berger W, Sutterluety H: Overexpression of Aurora-A in primary cells interferes with S-phase entry by diminishing Cyclin D1 dependent activities. Molecular cancer 2011, 10:28.
    192. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, Chen W, Galvin KM, Hoar KM, Huck JJ, LeRoy PJ et al: Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci U S A 2007, 104(10):4106-4111.
    193. Borges KS, Castro-Gamero AM, Moreno DA, da Silva Silveira V, Brassesco MS, de Paula Queiroz RG, de Oliveira HF, Carlotti CG, Jr., Scrideli CA, Tone LG: Inhibition of Aurora kinases enhances chemosensitivity to temozolomide and causes radiosensitization in glioblastoma cells. Journal of cancer research and clinical oncology 2012, 138(3):405-414.
    194. Pugacheva EN, Golemis EA: The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 2005, 7(10):937-946.
    195. Prajapati S, Tu Z, Yamamoto Y, Gaynor RB: IKKalpha regulates the mitotic phase of the cell cycle by modulating Aurora A phosphorylation. Cell Cycle 2006, 5(20):2371-2380.
    196. Lefkowitz GK, Gleeson JG: Aurora A moonlights in neurite extension. Nat Cell Biol 2009, 11(9):1053-1054.
    197. Oliveira TM, Ahmad R, Engh RA: VX680 binding in Aurora A: pi-pi interactions involving the conserved aromatic amino acid of the flexible glycine-rich loop. The journal of physical chemistry A 2011, 115(16):3895-3904.
    198. Reynolds BA, Tetzlaff W, Weiss S: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992, 12(11):4565-4574.
    199. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI: Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011, 8(1):59-71.
    200. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M et al: Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 2009, 4(6):568-580.
    201. Nakamura Y, Yamamoto M, Oda E, Yamamoto A, Kanemura Y, Hara M, Suzuki A, Yamasaki M, Okano H: Expression of tubulin beta II in neural stem/progenitor cells and radial fibers during human fetal brain development. Lab Invest 2003, 83(4):479-489.
    202. Aubert J, Stavridis MP, Tweedie S, O'Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason JO, Roy D et al: Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci U S A 2003, 100 Suppl 1:11836-11841.
    203. Sheikh BN, Dixon MP, Thomas T, Voss AK: Querkopf is a key marker of self-renewal and multipotency of adult neural stem cells. J Cell Sci 2012, 125(Pt 2):295-309.
    204. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821-5828.
    205. Clement V, Dutoit V, Marino D, Dietrich PY, Radovanovic I: Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer 2009, 125(1):244-248.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE