簡易檢索 / 詳目顯示

研究生: 江茂源
Chiang, Mao Yuan
論文名稱: 氧化亞銅及銀奈米粒子共修飾氧化鋅奈米線於光觸媒應用
Application of ZnO Nanowires Co-modified with Cuprous Oxide and Silver Nanoparticles in Photocatalysis
指導教授: 林鶴南
Lin, Heh Nan
口試委員: 李紫原
林樹均
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧化鋅奈米線氧化亞銅奈米粒子銀奈米粒子光觸媒
外文關鍵詞: zinc oxide nanowire, cuprous oxide nanoparticle, silver nanoparticle, photocatalysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗將氧化亞銅及銀奈米粒子修飾於氧化鋅奈米線,氧化鋅奈米線先經由熱蒸鍍法長在摻雜氟的氧化錫基板上,再經由光還原法將氧化亞銅及銀奈米粒子分別或者是同時修飾於氧化鋅奈米線上。相較於未經修飾氧化鋅奈米線,經過修飾的氧化鋅奈米線展現較佳的光觸媒表現,其中又以兩種奈米粒子共修飾的氧化鋅奈米線有最佳的光觸媒表現。
    藉由掃描式電子顯微鏡與穿透式電子顯微鏡觀察到奈米粒子的表面形貌並確認結構;螢光光譜圖的分析看出修飾過後奈米線在紫外放光波段強度下降,推斷為電子電洞對的再結合率降低。吸收光譜圖顯示出修飾過後奈米線光吸收率會提升,其成因為小能隙的氧化亞銅與會產生表面電漿的銀可幫助吸收光。
    在功率100W的鹵素燈下藉由分解濃度為50 µM的羅丹明B (rhodamine B)水溶液,並經由最小平方法計算其一階反應速率,共修飾的氧化鋅奈米線的反應速率最高,為0.32 µM/min,是未修飾氧化鋅奈米線的3.2倍。另外有在實際太陽光底下進行共修飾氧化鋅奈米線的光觸媒實驗,在80分鐘觀察到95%的分解效率,一階反應速率為0.73 µM/min。顯示出共修飾氧化鋅奈米線有做為光觸媒材料的實用價值與潛力。


    In this work, we report on the enhanced photocatalytic activity of ZnO nanowires (NWs) modified with cuprous oxide and silver nanoparticles (NPs). ZnO NWs were first grown on fluorine-doped tin oxide substrates by thermal evaporation without catalysts. They were then modified with cuprous oxide or silver NPs, or both, by photoreduction. The NP modified NWs show better photocatalytic performance than as-grown NWs. Furthermore, ZnO NWs co-modified with cuprous oxide and silver NPs have the best photocatalytic efficiency.
    From the scanning electron microscopy and transmission electron microscopy images, the morphologies and the structures of the NPs are confirmed. The ultraviolet emissions of modified ZnO NWs decrease in the photoluminescence spectra, revealing that the recombination of electron-hole pairs is reduced. The absorption spectra show that modified ZnO NWs have higher absorption in both visible and ultraviolet regions, which is due to the narrow band gap of cuprous oxide NPs and the plasmonic effect of silver NPs.
    The photocatalytic activities of the NWs were evaluated by degrading a 50 µM rhodamine B solution under the illumination of a 100 W halogen lamp. The zeroth-order kinetic constant of the co-modified ZnO NWs is 0.32 µM/min, which is 3.2 times as high as that of as-grown ZnO NWs. The co-modified NW sample has also been tested under direct sunlight illumination. A kinetic constant of 0.73 µM/min and a degradation efficiency of 95% in 80 min have been obtained.

    目錄 圖目錄 III 誌謝 V 摘要 VI Abstract VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 氧化鋅奈米線 4 2.1.1 晶體結構 4 2.1.2 奈米線成長機制與方法 5 2.1.3 本質摻雜形成n-type半導體 6 2.1.4 氧化鋅光學性質 7 2.2 光觸媒催化反應 8 2.2.1 光觸媒原理 8 2.2.2 提升氧化鋅於光觸媒反應的方法 10 2.3 表面電漿 (Surface Plasmon) 12 2.3.1 表面電漿原理 12 2.3.2 區域表面電漿 13 2.3.3 表面電漿於光觸媒應用 15 2.4 光還原法 18 第三章 實驗儀器與方法 20 3.1 實驗設計 20 3.2 材料製作流程 21 3.2.1 基板前處理 21 3.2.2 成長氧化鋅奈米線 22 3.2.3 製作氧化亞銅修飾氧化鋅奈米線 22 3.2.4 製作銀修飾氧化鋅奈米線 24 3.2.5 製作氧化亞銅及銀共修飾氧化鋅奈米線 25 3.3 分析儀器與樣品準備 25 3.3.1 掃描式電子顯微鏡 26 3.3.2 能量色散X射線光譜 26 3.3.3 穿透式電子顯微鏡 26 3.3.4 螢光光譜儀 27 3.3.5 紫外光-可見光分光光譜儀 27 3.4 光觸媒催化反應與量測 27 3.4.1 光觸媒反應系統架構 27 3.4.2 量測系統 28 3.4.3 光觸媒催化反應實驗步驟 28 3.4.4 吸收光譜量測步驟 29 第四章 結果與討論 31 4.1 材料特性分析 31 4.1.1 表面形貌 31 4.1.2 結構與組成 33 4.1.3 光致發光性質 35 4.1.4 光吸收率 36 4.2 RhB的自然分解速率 38 4.3 氧化鋅奈米線於鹵素燈下光觸媒效率 39 4.4 共修飾氧化鋅奈米線於太陽光下光觸媒效率 43 4.5 光觸媒效率提升因素 44 第五章 結論 47 參考文獻 49

    參考文獻
    1. Fujishima, A.; Honda, K. Nature 1972, 238, 37−38.
    2. Senthilnathan, J.; Philip, L. Chem Eng J 2010, 161, 83−92.
    3. Chen, H. H.; Nanayakkara, C. E.; Grassian, V. H. Chem Rev 2012, 112, 5919−5948.
    4. Liu, X. J.; Pan, L. K.; Lv, T.; Sun, Z. J Alloy Compd 2014, 583, 390−395.
    5. Sadowski, R.; Strus, M.; Buchalska, M.; Heczko, P. B.; Macyk, W. Photoch Photobio Sci 2015, 14, 514−519.
    6. Wan, Q.; Wang, T. H.; Zhao, J. C. Appl Phys Lett 2005, 87, 083105.
    7. Qiu, X. Q.; Li, L. P.; Zheng, J.; Liu, J. J.; Sun, X. F.; Li, G. S. J Phys Chem C 2008, 112, 12242−12248.
    8. Dong, F.; Wang, H. Q.; Wu, Z. B. J Phys Chem C 2009, 113, 16717−16723.
    9. Qiu, X. Q.; Li, G. S.; Sun, X. F.; Li, L. P.; Fu, X. Z. Nanotechnology 2008, 19, 215703.
    10. Wang, Z. Y.; Huang, B. B.; Dai, Y.; Qin, X. Y.; Zhang, X. Y.; Wang, P.; Liu, H. X.; Yu, J. X. J Phys Chem C 2009, 113, 4612−4617.
    11. Nayak, J.; Sahu, S. N.; Kasuya, J.; Nozaki, S. Appl Surf Sci 2008, 254, 7215−7218.
    12. Zheng, L. R.; Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. Inorg Chem 2009, 48, 1819−1825.
    13. Chang, J. H.; Lin, H. N. Mater Lett 2014, 132, 134−137.
    14. Chang, Y. H.; Chiang, M. Y.; Chang, J. H.; Lin, H. N. Mater Lett 2015, 138, 85−88.
    15. Sahu, D. R.; Liu, C. P.; Wang, R. C.; Kuo, C. L.; Huang, J. L. Int J Appl Ceram Tec 2013, 10, 814−838.
    16. Wang, Z. L. J Phys-Condens Mat 2004, 16, R829−R858.
    17. Wagner, R. S.; Ellis, W. C. Appl Phys Lett 1964, 4, 89−90.
    18. Wu, Y. Y.; Yang, P. D. J Am Chem Soc 2001, 123, 3165−3166.
    19. Ho, S. T.; Chen, K. C.; Chen, H. A.; Lin, H. Y.; Cheng, C. Y.; Lin, H. N. Chem Mater 2007, 19, 4083−4086.
    20. Ho, S. T.; Wang, C. Y.; Liu, H. L.; Lin, H. N. Chem Phys Lett 2008, 463, 141−144.
    21. Schmidt-Mende, L.; MacManus-Driscoll, J. L. Mater Today 2007, 10, 40−48.
    22. Park, W. I.; Jun, Y. H.; Jung, S. W.; Yi, G. C. Appl Phys Lett 2003, 82, 964−966.
    23. Ahn, C. H.; Kim, Y. Y.; Kim, D. C.; Mohanta, S. K.; Cho, H. K. J Appl Phys 2009, 105, 013502.
    24. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem Rev 1995, 95, 735−758.
    25. Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. J Hazard Mater 2006, 133, 226−232.
    26. Zou, C. W.; Rao, Y. F.; Alyamani, A.; Chu, W.; Chen, M. J.; Patterson, D. A.; Emanuelsson, E. A.; Gao, W. Langmuir 2010, 26, 11615−11620.
    27. Jung, S.; Yong, K. Chem Commun 2011, 47, 2643−2645.
    28. Chen, W.; Zhang, N.; Zhang, M. Y.; Zhang, X. T.; Gao, H.; Wen, J. CrystEngComm 2014, 16, 1201.
    29. Han, Z.; Wei, L.; Zhang, Z.; Zhang, X.; Pan, H.; Chen, J. Plasmonics 2013, 8, 1193−1202.
    30. Dong, Y.; Feng, C.; Jiang, P.; Wang, G.; Li, K.; Miao, H. RSC Adv 2014, 4, 7340.
    31. Ekambaram, S.; Iikubo, Y.; Kudo, A. J Alloy Compd 2007, 433, 237−240.
    32. Wu, C.; Shen, L.; Yu, H.; Zhang, Y.-C.; Huang, Q. Mater Lett 2012, 74, 236−238.
    33. 邱國斌; 蔡定平. 物理雙月刊 2006, 28, 472−485.
    34. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824−830.
    35. Zayats, A. V.; Smolyaninov, I. I. J Opt A-Pure Appl Op 2003, 5, S16−S50.
    36. Hutter, E.; Fendler, J. Adv Mater 2004, 16,1685−1706.
    37. Mie, G. Ann. Phys.-Berlin 1908, 25, 377−455.
    38. Tian, Y.; Tatsuma, T. J Am Chem Soc 2005, 127, 7632−7637.
    39. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Nano Lett 2013, 13, 240−247.
    40. Linic, S.; Christopher, P.; Ingram, D. B. Nat Mater 2011, 10, 911−921.
    41. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. J Am Chem Soc 2008, 130, 1676−1680.
    42. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. J Am Chem Soc 2012, 134, 15033−15041.
    43. Sun, S.; Wang, W.; Zhang, L.; Shang, M.; Wang, L. Catal Commun 2009, 11, 290−293.
    44. Chang, J.H.; Lin, H.N. J Nanomater 2014, 2014, 426457.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE