研究生: |
黃朝政 Huang, Chao-Cheng |
---|---|
論文名稱: |
非二位元低密度偶校碼之平行符元翻轉解碼法 Parallel Symbol-Flipping Decoding for Non-Binary Low-Density Parity-Check Codes |
指導教授: |
趙啟超
Chao, Chi-chao |
口試委員: |
林茂昭
蘇裕德 吳文榕 楊谷章 趙啟超 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 非二元低密度偶校碼 、平行符元翻轉解碼法 |
外文關鍵詞: | Non-Binary LDPC Code, Parallel Symbol-Flipping Decoding |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們提出了兩個新版本的非二位元低密度偶校碼之平行符元翻轉解碼法。模擬結果顯示,軟判決平行符元翻轉解碼法的效能優於許多現有基於可靠性消息傳遞的解碼法。與q 元和積演算法相比,它提供了一個有效的錯誤效能和解碼的複雜性之間的權衡。在系統需要一個簡單的解碼器或者軟信息無法取得的情況下,該算法可以簡化為硬判決平行符元翻轉解碼法。當非二位元低密度偶校碼的偶校驗矩陣有大的行和列比重時,這兩個解碼法效能特別好。
Two versions of a new parallel symbol-flipping decoding algorithm for non-binary low-density parity-check (NB-LDPC) codes are proposed. Simulation results show that the soft-decision parallel symbol-flipping decoding outperforms quite a number of existing reliability-based message-passing algorithms. It provides an effective trade-off between error performance anddecoding complexity compared with the q-ary sum-product algorithm. The algorithm can be simplified to hard-decision parallel symbol-flipping decoding for applications in communication or storage systems where either soft information is not available or a simple decoder is needed. They are particularly effective for decoding NB-LDPC codes whose parity-check matrices have large row/column weights.
[1] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. IT-8, pp. 21–28, Jan. 1962.
[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low-density parity-check codes,” Electron. Lett., vol. 32, pp. 1645–1646, Aug. 1996.
[3] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999.
[4] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619–637,
Feb. 2001.
[5] T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599–618, Feb. 2001.
[6] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite geometries: A rediscovery and new results,” IEEE Trans. Inform. Theory, vol. 47, pp.
2711–2763, Nov. 2001.
[7] M. C. Davey and D. J. C. MacKay, “Low-density parity check codes over GF(q),” IEEE Commun. Lett., vol. 2, pp. 165–167, Jun. 1998.
[8] L. Zeng, L. Lan, Y. Y. Tai, and S. Lin, “Dispersed Reed-Solomon codes for iterative decoding and construction of q-ary LDPC codes,” in Proc. IEEE Global Telecommun.
Conf., St. Louis, MO, Nov. 2005, pp. 1193–1198.
[9] S. Song, L. Zeng, S. Lin, and K. Abdel-Ghaffar, “Algebraic constructions of nonbinary quasi-cyclic LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, WA, Jul. 2006, pp. 83–87.
[10] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels,” IEEE Trans. Inf. Theory, vol. 52, pp. 549-
583, Feb. 2006.
[11] C. Poulliat, M. Fossorier, and D. Declercq, “Optimization of non binary LDPC code using their binary images,” in Proc. Int. Turbo Code Symp., Munich, Germany, Apr. 2006, pp. 1–32.
[12] B. Zhou, J. Kang, Y. Y. Tai, Q. Huang, and S. Lin, “High performance nonbinary quasi-cyclic LDPC codes on Euclidean geometries,” in Proc. IEEE Military Commun.
Conf., Orlando, FL, Oct. 2007, pp. 1–8.
[13] L. Lan, L. Q. Zeng, Y. Y. Tai, L. Chen, S. Lin, and K. A. S. Abdel Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field
approach,” IEEE Trans. Inform. Theory, vol. 53, pp. 2429–2458, Jul. 2007.
[14] L. Zeng, L. Lan, Y. Y. Tai, B. Zhou, S. Lin, and K. A. S. Abdel- Ghaffar, “Construction of nonbinary cyclic, quasi-cyclic and regular LDPC codes: A finite geometry approach,” IEEE Trans. Commun., vol. 56, pp. 378–387, Mar. 2008.
[15] L. Zeng, L. Lan, Y. Y. Tai, S. Song, S. Lin, and K. A. S. Abdel-Ghaffar, “Constructions of nonbinary quasi-cyclic LDPC codes: A finite field approach,” IEEE Trans. Commun.,
vol. 56, pp. 545–554, Apr. 2008.
[16] S. Song, B. Zhou, S. Lin, and K. A. S. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” IEEE Trans. Commun., vol. 57, pp. 84–93, Jan. 2009.
[17] B. Zhou, J. Kang, Y. Y. Tai, S. Lin, and Z. Ding, “High performance non-binary quasi-cyclic LDPC codes on Euclidean geometries,” IEEE Trans. Commun., vol. 57,
pp. 1298–1311, May 2009.
[18] B. Zhou, J. Kang, S. Song, S. Lin, K. A. S. Abdel-Ghaffar, and M. Xu, “Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions,” IEEE Trans. Commun., vol. 57, pp. 1652–1662, Jun. 2009.
[19] J. Kang, Q. Huang, L. Zhang, B. Zhou, and S. Lin, “Quasi-cyclic LDPC codes: An algebraic construction,” IEEE Trans. Commun., vol. 58, pp. 1383–1396, May 2010.
[20] L. Zhang, Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Quasi-cyclic LDPC codes: An algebraic construction, rank analysis and codes on Latin squares,” IEEE Trans. Commun., vol. 58, pp. 3126–3139, Nov. 2010.
[21] D. J. C. MacKay and M. C. Davey, “Evaluation of Gallager codes for short block length and high rate applications,” in Codes, Systems and Graphical Models, B. Marcus and J. Rosenthal, eds. New York: Springer-Verlag, 2001, pp. 113–130.
[22] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC codes over GF(2q),” in Proc. IEEE Inform. Theory Workshop, Paris, France, Mar. 2003, pp. 70–73.
[23] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over GF(q),” in Proc. IEEE Int. Conf. Commun., Paris, France, Jun. 2004, pp. 772–776.
[24] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over GF(q),” IEEE Trans, Commun., vol. 55, pp. 633–643, Apr. 2007.
[25] V. Savin, “Min-max decoding for non binary LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008, pp. 960–964.
[26] C.-Y. Chen, Q. Huang, C.-C. Chao, and S. Lin, “Two low-complexity reliability-based message-passing algorithms for decoding non-binary LDPC codes,” IEEE Trans. Com-
mun., vol. 58, pp. 3140–3147, Dec. 2010.
[27] D. Zhao, X. Ma, C. Chen, and B. Bai, “A low complexity decoding algorithm for majority-logic decodable nonbinary LDPC codes,” IEEE Commun. Lett., vol. 14, pp.
1062–1064, Nov. 2010.
[28] C. Chen, B. Bai, X. Ma, and X. Wang, “A symbol-reliability based message-passing decoding algorithm for nonbinary LDPC codes over finite fields,” in Proc. Int. Symp. Turbo Codes Iterative Inform. Process, Brest, France, Sep. 2010, pp. 251–255.
[29] X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based message-passing decoder architectures for non-binary LDPC codes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, pp. 1–13., Sep. 2011.
[30] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.
[31] X. Wu, C. Zhao, and X. You, “Parallel weighted bit-flipping decoding,” IEEE Commun. Lett., vol. 11, pp. 671–673, Aug. 2007.