研究生: |
林柏華 Bo-Hua Lin |
---|---|
論文名稱: |
適用於快閃記憶體的QC-LDPC編碼調變 Application of LDPC Coded Modulation to NAND Flash |
指導教授: |
翁詠祿
Yeong-Luh Ueng |
口試委員: |
王忠炫
Chung-Hsuan Wang 李晃昌 Huang-Chang Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 錯誤更正碼 |
外文關鍵詞: | LDPC |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,針對QC-LDPC編碼調變設計了一整套地建碼流程。首先,提出了能應用在QC-LDPC的密度演化,它能區分出相對應調變符元中不同位元的機率分布,且能在QC-LDPC碼的迭代過程中計算出機率分布的變化。傳統的密度演化只能在BPSK訊號中計算出解碼的臨界值,而QC-LDPC的密度演化可以進一步用來推估更高階層的迭代式編碼調變的解碼臨界值,及碼內結構對解碼臨界值所造成不同的影響。接著,為了要降低錯誤平層,需要利用交錯器來降低錯誤平層。對於non-Gray的迭代式編碼調變,需要利用交錯器來設法將陷入同一個短環內的變異節點分散到不同的符元中,然而在QC-LDPC碼中,我們可以利用基礎矩陣的位移指標,將矩陣中的短環找出,且將陷入短環的變異節點分散到不同的符元。因此,我們可以不必要透過交錯器而僅僅靠著基礎矩陣中的簡單地行轉換,一樣能達到降低錯誤平層的效果。我們針對適用再TLC快閃記憶體且碼長為18396,碼率是0.94的QC-LDPC迭代式編碼調變(8PAM)提出了一整套的設計流程。當使用最佳的 non-Gray mapping ,能以著較低的平均維分布而與gray mapping達到相似的性能,最後模擬也顯示,QC-LDPC編碼調變根據整套地設計流程能達到與預期一樣好的解碼臨界值與低錯誤平層,也能大幅降低解碼的複雜度。
In this theses, a design flow for coded modulation that integrates quasi-cyclic low-density parity check (QC-LDPC) codes and iterative detection and decoding (IDD) is proposed. The first major technique in this work is a modified QC-LDPC based density evolution(QCDE). It can indicate the difference between the probability distribution of bits corresponding to individual modulation level of the received symbols, and evaluate the changing of the probability distribution following the structure of the QC-LDPC codes. Comparing the conventional density evolution that can only detect the decoding threshold for BPSK signal, the modified QCDE can evaluate the decoding and detection threshold for IDD receiver with high order modulation, and the effect of the code structure can also be observed.
The second major technique is QC-LDPC-based interleaving scheme for error floor lowering. For coded modulation with non-Gray mapping and IDD, an interleaver is required in order to distribute the variable nodes in a single short cycles of QC-LDPC codes into different symbols, or high error floor will be introduced. Take the advantage of the structure of QC-LDPC code, the variable nodes in a single short cycles can be observed via the based matrix and the shift indices, and are mapped into different symbols. Therefore, the interleaver can be removed after a simple column change in the base matrix is applied.
The proposed design flow is applied to the construction of the coded modulation combining a length-18396 rate-0.94 QC-LDPC code and the 8-PAM modulation, which is suitable for TLC (triple-level cell) flash memory. Refer to the binary switching algorithm, an optimized non-Gray mapping is selected, then a similar performance can be achieved using a QC-LDPC code with a much smaller degree distribution comparing to that combing the Gray mapping. It shows that, except the low decoding/detection threshold and low error floor, the coded modulation designed using the proposed design flow also has a much low decoding complexity.
[1] Blahut, Richard E. \Algebraic codes for data transmission." Cambridge
university press, 2003.
[2] J. Yang, \Novel ECC architecture enhances storage system reliability, in
Proc. of Flash Memory Summit, Aug. 2012.
[3] X. Hu, \LDPC codes for
ash channel, in Proc. of Flash Memory Summit,
Aug. 2012.
[4] E. Yeo, \An LDPC-enabled
ash controller in 40nm CMOS, in Proc. of
Flash Memory Summit, Aug. 2012.
[5] Wang, Jiadong, et al. \LDPC Decoding with Limited-Precision Soft Information
in Flash Memories." arXiv preprint arXiv:1210.0149 (2012).
[6] Jieng-Heng Shy, "LDPC Coded Modulation and Its Applications to MLC
Flash Memory," National Tsinghua University Master Th 2014
[7] ten Brink, Stephan, Gerhard Kramer, and Alexei Ashikhmin. \Design of
low-density parity-check codes for modulation and detection." Communications,
IEEE Transactions on 52.4 (2004): 670-678.
[8] Richardson, Thomas J., and Rdiger L. Urbanke. \The capacity of lowdensity
parity-check codes under message-passing decoding." Information
Theory, IEEE Transactions on 47.2 (2001): 599-618. APA
[9] MacKay, David JC, and Michael S. Postol. \Weaknesses of Margulis and
Ramanujan-Margulis low-density parity-check codes." Electronic Notes in
Theoretical Computer Science 74 (2003): 97-104.
[10] Wang, C-C., Sanjeev R. Kulkarni, and H. Vincent Poor. \Density evolution
for asymmetric memoryless channels." Information Theory, IEEE
Transactions on 51.12 (2005): 4216-4236. APA
[11] Fabian Steiner, Georg Bocherer,Gianluigi Liva "Protograph-Based LDPC
Code Design for Bit-Metric Decoding"Information Theory (ISIT), 2015
IEEE International Symposium on
[12] William Ryan and Shu Lin, "Constructions of LDPC Codes Based on
Finite Filelds, "Channel Codes : Classical and Modern, Chapter 11, pp.484-
495.
[13] Jun Xu, Lei Chen, Ivana Djurdjevic, Shu Lin and Khaled Abdel-Ghaar,
"Construction of Regular and Irregular LDPC Codes: Geometry Decomposittion
and Masking," IEEE Transations on Information Theory,
VOL.53, No. 1, JANUARY 2007.
[14] Marc P. C. Fossorier, Senior Member, IEEE, "Quasi-Cyclic Low-Density
Parity-Check Codes From Circulant Permutation Matrices",IEEE TRANSACTIONS
ON INFORMATION THEORY, VOL. 50, NO. 8, AUGUST
2004
[15] Richardson, Tom. \Error
oors of LDPC codes." Proceedings of the annual
Allerton conference on communication control and computing. Vol.
41. No. 3. The University; 1998, 2003.
[16] Qiuju Diao, Ying Yu Tsai, Shu Lin, and Khaled Abdel-Ghaar, "LDPC
Codes on Partial Geometries: Construction, Trapping Set Structure, and
Puncturing," IEEE Transactions on information Theory, VOL. 59 ,NO. 12,
DECEMBER 2013
[17] Dong, Guiqiang, Ningde Xie, and Tong Zhang. \On the use of soft-decision
error-correction codes in NAND
ash memory." Circuits and Systems I:
Regular Papers, IEEE Transactions on 58.2 (2011): 429-439.
[18] Gallager, Robert. \Low-density parity-check codes." Information Theory,
IRE Transactions on 8.1 (1962): 21-28.
[19] MacKay, David JC. \Good error-correcting codes based on very sparse
matrices." Information Theory, IEEE Transactions on 45.2 (1999): 399-
431.
[20] Chung, Sae-Young, et al. \On the design of low-density parity-check codes
within 0.0045 dB of the Shannon limit." Communications Letters, IEEE
5.2 (2001): 58-60.
[21] Schreckenbach, Frank, et al. \Optimization of symbol mappings for bitinterleaved
coded modulation with iterative decoding." Communications
Letters, IEEE 7.12 (2003): 593-595.