簡易檢索 / 詳目顯示

研究生: 黃瀚賜
Huang, Han-Tze
論文名稱: 澱粉吸附區與醣類交互作用之模型
An Interaction Model between Glycans and Starch Binding Domain of Rhizopus oryzae Glucoamylase
指導教授: 張大慈
Chang, Dah-Tsyr
口試委員: 孫玉珠
Sun, Yuh-Ju
蕭傳鐙
Hsiao, Chwan-Deng
林俊宏
Lin, Chun-Hung
周維宜
Chou, Wei-I
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 118
中文關鍵詞: 葡萄糖澱粉酵素澱粉吸附區醣類吸附模組
外文關鍵詞: glucoamylase, starch binding domain, carbohydrate binding module
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 米根黴菌 (Rhizopus oryzae) 葡萄糖澱粉酵素 (glucoamylase) 為579個胺基酸組成的醣類水解酶,其整體結構包含胺基端澱粉吸附區 (starch-binding domain, RoSBD)、羧基端酵素催化區及一段高度醣基化的連接片段。RoSBD隸屬於醣類吸附模組 (carbohydrate-binding module, CBM) 家族二十一,對天然澱粉與可溶性多醣具有強結合力。核磁共振與晶體繞射解析證明RoSBD具有兩個配體結合位:第一個結合位由色胺酸47、酪胺酸83、酪胺酸93、及酪胺酸94組成,第二個結合位由酪胺酸32、苯丙胺酸58組成;兩個RoSBD各提供一個不同的配體結合位與單一醣分子結合。一般而言,串接的醣類吸附模組對醣類的結合力較強;因此本研究設計以一段短胜肽鏈串接兩個RoSBD,並探討其對醣類的結合力值變化。利用恆溫滴定熱量計 (isothermal titration calorimetry, ITC) 測量雙聚體RoSBD與多種不同醣類的結合力。ITC實驗結果顯示雙聚體RoSBD對多種不同醣類的結合力都高於單體RoSBD。除此之外,本研究亦將RoSBD的主要配體結合胺基酸突變成丙胺酸,根據測量突變蛋白質對不同醣類之結合力變化配合RoSBD之三級結構,可預測雙聚體RoSBD和不同醣類之結合模式。對於短鏈或環形醣類而言,以結晶繞射解析的結果去分析,雙聚體中兩個RoSBD分子各提供一個不同的配體結合位與醣分子結合。若以恆溫滴定熱量計的數據去分析,在雙聚體RoSBD之N端的酪胺酸32對於短鏈醣類的結合是很重要的,然而在雙聚體RoSBD之C端的酪胺酸32對於環形醣的結合是很重要的;而對於長鍊醣類而言,酪胺酸32扮演著極為重要的角色,推測雙聚體中兩個RoSBD分子的皆以酪胺酸32與長鏈醣分子結合,兩個RoSBD分子形成面對面之模型。本研究發現RoSBD會和不同種類的醣類有不同的結合模型。了解RoSBD和醣類的結合模式,能更深入探討醣類吸附模組與不同醣類結合的分子機制。


    The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) belongs to carbohydrate binding module (CBM) family 21 with high binding affinities toward raw starches, and contains two ligand binding sites at opposite position (Site I: Trp47, Tyr83 and Tyr94; Site II: Tyr32, Phe58). Three dimensional structure reveals that two RoSBD molecules hold the same sugar ligand by different binding sites. Natural CBMs in tandem repeat show higher ligand-binding affinity than single CBM does, yet whether two cooperative RoSBDs enhance ligand binding properties remains to be investigated. In this study, dimeric RoSBD was constructed with a short peptide linker between two RoSBD units. Isothermal titration calorimetry (ITC) data indicated that dimeric RoSBD processed higher affinities toward a series of glycans than monomeric RoSBD. Moreover, site-directed mutagenesis of major ligand binding residues Y32 and W47 on each domain of dimeric RoSBD revealed determining factors by ITC analysis. In addition, in silico structure modeling was carried out by quantitative measurement of binding affinity between wild-type/mutant dimeric RoSBD and soluble starch by ITC and published X-ray crystallography data. For short glycans such as maltoheptaose (Glc7), or cyclic ligand β-cyclodextrin (βCD), two RoSBD molecules might hold on the same sugar ligand by different binding sites based on X-ray crystallography data to predict. However, according to ITC data, Y32 on the N-terminal RoSBD played a crucial role in Glc7 binding and Y32 on the C-terminal RoSBD was important for βCD binding. For long chain glycans, Y32 in both two RoSBD molecules played a crucial role in ligand binding, indicated that two binding site II of dimeric RoSBD bound to a same glycan to form RoSBD/RoSBD interface. In conclusion, RoSBD might bind to various glycans in different interaction models. The interaction model between RoSBD and glycans will greatly increase our understanding in the molecular mechanisms of CBM functions.

    List of Content 中文摘要 I Abstract II Acknowledgement......................................................................................................IV Table of Contents V List of Figures VII List of Tables IX List of Appendix X Abbreviations XI Chapter 1 Introduction 1 1.1 Carbohydrates 1 1.2 Starch 1 1.3 Glucoamylase 2 1.4 Carbohydrate binding module (CBM) 4 1.5 Starch binding domain (SBD) 9 1.6 Single chain antibody variable region fragment 13 1.7 Research motivation 15 Chapter 2 Materials and Methods 17 2.1 Microbial strains, media and plasmid 17 2.2 Construction of plasmid 17 2.3 Site-directed mutagenesis 18 2.4 Competent cell preparation 19 2.5 Escherichia coli heat-shock transformation 19 2.6 Confirmation of colonies by in situ PCR 20 2.7 Mini-preparation of plasmid 20 2.8 Recovery of DNA fragment 21 2.9 Restriction enzyme digestion and Ligation 21 2.10 Small scale expression of wild-type and mutant dimeric RoSBDs in E. coli 22 2.11 Purification of wild-type and mutant dimeric RoSBDs by amylose column chromatography 22 2.12 Buffer exchange and determination of protein concentration 23 2.13 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 24 2.14 Saturation binding assay 24 2.15 Thermodynamic measurement of binding to soluble glycans by isothermal titration calorimetry (ITC) 25 2.16 Feature-incorporated alignment (FIA)-based homology modeling 25 Chapter 3 Results 26 3.1 Characterization of dimeric RoSBD 26 3.2 Construction of pET23a-Rosbd-(g4s)1-Rosbd 26 3.3 Small scale expression of dimeric RoSBD 27 3.4 Purification of RoSBD-(G4S)3-RoSBD by amylose column chromatography 28 3.5 Quantitative measurement of binding affinity between RoSBD-(G4S)3- RoSBD and soluble glycans 29 3.6 Construction of RoSBD-(G4S)3-RoSBD mutants 31 3.7 Small scale expression of RoSBD-(G4S)3-RoSBD mutants 33 3.8 Purification of RoSBD-(G4S)3-RoSBD mutants by amylose column chromatography 34 3.9 Quantitative measurement of binding affinity between RoSBD-(G4S)3- RoSBD mutants and soluble glycans 35 3.10 Depletion isotherm of wild-type/mutant RoSBD-(G4S)3-RoSBDs………...40 3.11 Large scale purification of RoSBD-(G4S)3-RoSBD………………………...41 Chapter 4 Discussion 43 4.1 Predicted RoSBD-(G4S)3-RoSBD structure 43 4.2 Structure comparison between SBD and tandem repeat CBMs……… .46 4.3 Role of CBMs in immune system…………………………………………….48 Figures 51 Tables 96 References 105 Appendix 112 List of Figures Fig. 1-1 Schematic diagram of amylose and amylopectin……………………….2 Fig. 1-2 Different modular arrangements found in glucoamylases……………..3 Fig. 1-3 Structure of glucoamylase………………………………………………..4 Fig. 1-4 CBM distribution in different proteins………………………………….5 Fig. 1-5 CBM distribution in different proteins………………………………….7 Fig. 1-6 Carbohydrate binding modules containing starch binding activities 8 Fig. 1-7 The three dimensional structure of RoSBD 10 Fig. 1-8 The overall structures of the RoSBD complexes 12 Fig. 1-9 RoSBD molecules cooperated in ligand binding 13 Fig. 1-10 Structures of antibody and single chain antibody variable region fragment 14 Fig. 3-1 Small scale expression of RoSBD-(G4S)1-RoSBD 51 Fig. 3-2 Small scale expression of RoSBD-(G4S)2-RoSBD 52 Fig. 3-3 Small scale expression of RoSBD-(G4S)3-RoSBD 53 Fig. 3-4 Verification of expression of dimeric RoSBDs by Western blot analysis 54 Fig. 3-5 Purification of RoSBD-(G4S)3-RoSBD by amylose resin………………55 Fig. 3-6 Exact pI value of native RoSBD-(G4S)3-RoSBD ……………………....56 Fig. 3-7 Molecular weight of native RoSBD-(G4S)3-RoSBD 57 Fig. 3-8 Binding affinity between RoSBD-(G4S)3-RoSBD and αCD 58 Fig. 3-9 Binding affinity between RoSBD-(G4S)3-RoSBD and βCD 59 Fig. 3-10 Binding affinity between RoSBD-(G4S)3-RoSBD and γCD 60 Fig. 3-11 Binding affinity between RoSBD-(G4S)3-RoSBD and soluble starch 61 Fig. 3-12 Binding affinity between RoSBD-(G4S)3-RoSBD and DP17 62 Fig. 3-13 Binding affinity between RoSBD-(G4S)3-RoSBD and Glc7 63 Fig. 3-14 Binding affinity between RoSBD-(G4S)3-RoSBD and Glc3 64 Fig. 3-15 Binding affinity between RoSBD-(G4S)3-RoSBD and iGlc3 65 Fig. 3-16 Small scale expression of RoSBD(Y32A)-(G4S)3-RoSBD 66 Fig. 3-17 Small scale expression of RoSBD-(G4S)3-RoSBD(Y32A) 67 Fig. 3-18 Small scale expression of RoSBD(W47A)-(G4S)3-RoSBD 68 Fig. 3-19 Small scale expression of RoSBD-(G4S)3-RoSBD(W47A) 69 Fig. 3-20 Verification of of RoSBD(Y32A)-(G4S)3-RoSBD expression by Western blot analysis 70 Fig. 3-21 Verification of of RoSBD-(G4S)3-RoSBD(Y32A) expression by Western blot analysis 71 Fig. 3-22 Verification of of RoSBD(W47A)-(G4S)3-RoSBD and RoSBD(W47A)-(G4S)3-RoSBD expression by Western blot analysis 72 Fig. 3-23 Purification of RoSBD(Y32A)-(G4S)3-RoSBD by amylose resin 73 Fig. 3-24 Purification of RoSBD-(G4S)3-RoSBD(Y32A) by amylose resin 74 Fig. 3-25 Purification of RoSBD(W47A)-(G4S)3-RoSBD by amylose resin 75 Fig. 3-26 Purification of RoSBD-(G4S)3-RoSBD(W47A) by amylose resin 76 Fig. 3-27 Binding affinity between mutant RoSBD-(G4S)3-RoSBD and soluble starch 77 Fig. 3-28 Binding affinity between mutant RoSBD-(G4S)3-RoSBD and DP17 79 Fig. 3-29 Binding affinity between mutant RoSBD-(G4S)3-RoSBD and Glc7 81 Fig. 3-30 Binding affinity between mutant RoSBD-(G4S)3-RoSBD and βCD 83 Fig. 3-31 Depletion isotherms of wild-type/mutant RoSBD-(G4S)3-RoSBDs….85 Fig. 3-32 Purification of RoSBD-(G4S)3-RoSBD by amylose resin 86 Fig. 4-1 Three dimensional structure of scFv…………...………………………87 Fig. 4-2 Putative structures of RoSBD-(G4S)3-RoSBD derived ITC data..…....88 Fig. 4-3 Predicted structures of RoSBD-(G4S)3-RoSBD by X-ray crystallography…………………………………………………………..90 Fig. 4-4 Three dimensional structure of BhCBM25 and BhCBM26……….....91 Fig. 4-5 Three dimensional structure of the tandem CBM41s……………..….92 Fig. 4-6 Schematic diagrams of type I topology and type II topology………...93 Fig. 4-7 An immunoglobulin-like structure of carbohydrate binding proteins. .94 Fig. 4-8 Sequence alignment of immunoglobulin-like proteins………………..95 List of Tables Table 1 Properties of dimeric RoSBDs 96 Table 2 Thermodynamic parameters of RoSBD-(G4S)3-RoSBD –glycan interaction…………………………………………………………….. ..97 Table 3 Ligand binding constants of RoSBD and RoSBD-(G4S)3-RoSBD 98 Table 4 The reduction rates of dissociation constant of RoSBD-(G4S)3-RoSBD comparing to RoSBD 99 Table 5 Thermodynamic parameters of wild-type and mutant RoSBD-(G4S)3- RoSBD binding to soluble starch, DP17, Glc7, and βCD 100 Table 6 Ligand binding constants of RoSBD-(G4S)3-RoSBD and RoSBD-(G4S)3- RoSBD mutants 102 Table 7 Binding parameters of wild-type/mutant RoSBD-(G4S)3-RoSBD to granular corn starch determined by depletion isotherms………......104 List of Appendix Appendix I Map for pET23a(+) vector 112 Appendix II DNA fragment encoding (g4s)1-Rosbd amplified by PCR 113 Appendix III Verification of recombinant pET23a-Rosbd-(g4s)1-Rosbd 114 Appendix IV Site-directed mutagenesis of pET23a-Rosbd-(g4s)3 and pET23a- Rosbd………………………………………………………………115 Appendix V Verification of site-directed mutagenesis of pET23a-Rosbd (y32a) -(g4s)3-Rosbd and pET23a-Rosbd-(g4s)3-Rosbd(y32a) 116 Appendix VI Verification of site-directed mutagenesis of pET23a-Rosbd (w47a)-(g4s)3-Rosbd……………………………………………….117 Appendix VII Verification of site-directed mutagenesis of pET23a-Rosbd -(g4s)3-Rosbd(w47a) 118

    References

    1. Gagneux, P. and A. Varki, Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology, 1999. 9(8): p. 747-55.
    2. Crossman, L. and J.M. Dow, Biofilm formation and dispersal in Xanthomonas campestris. Microbes Infect, 2004. 6(6): p. 623-9.
    3. Kelly, G.S., The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease. Altern Med Rev, 1998. 3(1): p. 27-39.
    4. Nagai, Y., Cell regulatory function of glycosphingolipids: Carbohydrate recognition and biosignaling. Pure and Applied Chemistry, 1998. 70(1): p. 49-53.
    5. Buleon, A., et al., Starch granules: structure and biosynthesis. Int J Biol Macromol, 1998. 23(2): p. 85-112.
    6. Gessler, K., et al., V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(8): p. 4246-51.
    7. Sauer, J., et al., Glucoamylase: structure/function relationships, and protein engineering. Biochimica et biophysica acta, 2000. 1543(2): p. 275-293.
    8. Marin-Navarro, J. and J. Polaina, Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol, 2011. 89(5): p. 1267-73.
    9. Bott, R., et al., Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry, 2008. 47(21): p. 5746-54.
    10. Manjunath, P., B.C. Shenoy, and M.R. Raghavendra Rao, Fungal glucoamylases. J Appl Biochem, 1983. 5(4-5): p. 235-60.
    11. Sorimachi, K., et al., Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure, 1997. 5(5): p. 647-61.
    12. Lin, S.C., et al., Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem, 2007. 8: p. 9.
    13. Chou, W.I., et al., The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. The Biochemical journal, 2006. 396(3): p. 469-77.
    14. Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical journal, 1991. 280 ( Pt 2): p. 309-16.
    15. Moser, F., et al., Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnology and bioengineering, 2008. 100(6): p. 1066-77.
    16. Cantarel, B.L., et al., The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res, 2009. 37(Database issue): p. D233-8.
    17. Guillen, D., S. Sanchez, and R. Rodriguez-Sanoja, Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol, 2010. 85(5): p. 1241-9.
    18. Kraulis, P.J. and T.A. Jones, Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures. Proteins, 1987. 2(3): p. 188-201.
    19. Boraston, A.B., et al., Identification and glucan-binding properties of a new carbohydrate-binding module family. The Biochemical journal, 2002. 361(Pt 1): p. 35-40.
    20. Notenboom, V., et al., Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry, 2001. 40(21): p. 6248-56.
    21. Vaaje-Kolstad, G., et al., The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. The Journal of biological chemistry, 2005. 280(31): p. 28492-7.
    22. Barral, P., et al., An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination. The Biochemical journal, 2005. 390(Pt 1): p. 77-84.
    23. Kawazu, T., et al., Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase. J Bacteriol, 1987. 169(4): p. 1564-70.
    24. Ito, Y., et al., Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl Environ Microbiol, 2003. 69(12): p. 6969-78.
    25. Boraston, A.B., E. Ficko-Blean, and M. Healey, Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry, 2007. 46(40): p. 11352-60.
    26. Boraston, A.B., et al., Co-operative binding of triplicate carbohydrate-binding modules from a thermophilic xylanase. Mol Microbiol, 2002. 43(1): p. 187-94.
    27. Guillen, D., et al., Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol, 2007. 73(12): p. 3833-7.
    28. Boraston, A.B., et al., A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. The Journal of biological chemistry, 2006. 281(1): p. 587-98.
    29. Bolam, D.N., et al., Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. The Biochemical journal, 1998. 331 ( Pt 3): p. 775-81.
    30. Shoseyov, O., Z. Shani, and I. Levy, Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev, 2006. 70(2): p. 283-95.
    31. Lee, I., B.R. Evans, and J. Woodward, The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy, 2000. 82(1-4): p. 213-21.
    32. Chou, W.Y., et al., Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. Bioinformatics, 2010. 26(8): p. 1022-8.
    33. Giardina, T., et al., Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol, 2001. 313(5): p. 1149-59.
    34. Southall, S.M., et al., The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS letters, 1999. 447(1): p. 58-60.
    35. Sorimachi, K., et al., Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol, 1996. 259(5): p. 970-87.
    36. Kamitori, S., et al., Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. J Mol Biol, 1999. 287(5): p. 907-21.
    37. van Bueren, A.L. and A.B. Boraston, The structural basis of alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. J Mol Biol, 2007. 365(3): p. 555-60.
    38. Glaring, M.A., et al., Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and alpha-amylase involved in plastidial starch metabolism. The FEBS journal, 2011. 278(7): p. 1175-85.
    39. McBride, A., et al., The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab, 2009. 9(1): p. 23-34.
    40. Valdez, H.A., et al., Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry, 2008. 47(9): p. 3026-32.
    41. Martens, E.C., et al., Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. The Journal of biological chemistry, 2009. 284(37): p. 24673-7.
    42. Koropatkin, N.M. and T.J. Smith, SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Structure, 2010. 18(2): p. 200-15.
    43. Fukuda, M., et al., Psychological intervention can partly alter P300-amplitude abnormalities in schizophrenics. Jpn J Psychiatry Neurol, 1989. 43(4): p. 633-8.
    44. Rodriguez-Sanoja, R., N. Oviedo, and S. Sanchez, Microbial starch-binding domain. Curr Opin Microbiol, 2005. 8(3): p. 260-7.
    45. Ashikari, T., et al., Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast. Agricultural and Biological Chemistry, 1986. 50(4): p. 957-964.
    46. Bui, D.M., et al., Cloning and expression of an Arxula adeninivorans glucoamylase gene in Saccharomyces cerevisiae Applied Microbiology and Biotechnology, 1996. 44(5): p. 610-619.
    47. Houghton-Larsen, J. and P.A. Pedersen, Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol, 2003. 62(2-3): p. 210-7.
    48. Tung, J.Y., et al., Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. The Biochemical journal, 2008. 416(1): p. 27-36.
    49. Boraston, A.B., et al., Carbohydrate-binding modules: fine-tuning polysaccharide recognition. The Biochemical journal, 2004. 382(Pt 3): p. 769-81.
    50. Guan, L., Y. Hu, and H.R. Kaback, Aromatic stacking in the sugar binding site of the lactose permease. Biochemistry, 2003. 42(6): p. 1377-82.
    51. Ponyi, T., et al., Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry, 2000. 39(5): p. 985-91.
    52. Pell, G., et al., Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry, 2003. 42(31): p. 9316-23.
    53. Xie, H., et al., Role of hydrogen bonding in the interaction between a xylan binding module and xylan. Biochemistry, 2001. 40(19): p. 5700-7.
    54. Liu, Y.N., et al., Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. The Biochemical journal, 2007. 403(1): p. 21-30.
    55. Woof, J.M. and D.R. Burton, Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol, 2004. 4(2): p. 89-99.
    56. Penichet, M.L. and S.L. Morrison, Antibody-cytokine fusion proteins for the therapy of cancer. J Immunol Methods, 2001. 248(1-2): p. 91-101.
    57. Alfthan, K., et al., Properties of a single-chain antibody containing different linker peptides. Protein Eng, 1995. 8(7): p. 725-31.
    58. Putnam, F.W., Y.S. Liu, and T.L. Low, Primary structure of a human IgA1 immunoglobulin. IV. Streptococcal IgA1 protease, digestion, Fab and Fc fragments, and the complete amino acid sequence of the alpha 1 heavy chain. The Journal of biological chemistry, 1979. 254(8): p. 2865-74.
    59. Hayhurst, A. and W.J. Harris, Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif, 1999. 15(3): p. 336-43.
    60. Bird, R.E., et al., Single-chain antigen-binding proteins. Science, 1988. 242(4877): p. 423-6.
    61. Huston, J.S., et al., Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85(16): p. 5879-83.
    62. Worn, A. and A. Pluckthun, Stability engineering of antibody single-chain Fv fragments. J Mol Biol, 2001. 305(5): p. 989-1010.
    63. Huston, J.S., et al., Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol, 1991. 203: p. 46-88.
    64. Gibbs, R.A., et al., Construction and characterization of a single-chain catalytic antibody. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(9): p. 4001-4.
    65. Holliger, P. and G. Winter, Engineering bispecific antibodies. Curr Opin Biotechnol, 1993. 4(4): p. 446-9.
    66. Argos, P., An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol, 1990. 211(4): p. 943-58.
    67. Schott, M.E., et al., Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules. Cancer Res, 1992. 52(22): p. 6413-7.
    68. Brinkmann, U. and I. Pastan, Immunotoxins against cancer. Biochimica et biophysica acta, 1994. 1198(1): p. 27-45.
    69. Dubel, S., et al., Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J Immunol Methods, 1995. 178(2): p. 201-9.
    70. Hashimoto, H., Recent structural studies of carbohydrate-binding modules. Cellular and molecular life sciences : CMLS, 2006. 63(24): p. 2954-67.
    71. Dodd, R.B. and K. Drickamer, Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology, 2001. 11(5): p. 71R-9R.
    72. Zdanov, A., et al., Structure of a single-chain antibody variable domain (Fv) fragment complexed with a carbohydrate antigen at 1.7-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(14): p. 6423-7.
    73. Raag, R. and M. Whitlow, Single-chain Fvs. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 1995. 9(1): p. 73-80.
    74. van Bueren, A.L., et al., Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors. Nat Struct Mol Biol, 2007. 14(1): p. 76-84.
    75. Williamson, M.P., et al., Function of conserved tryptophans in the Aspergillus niger glucoamylase 1 starch binding domain. Biochemistry, 1997. 36(24): p. 7535-9.
    76. Sharon, N. and H. Lis, History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 2004. 14(11): p. 53R-62R.
    77. Liu, Y.F., et al., IFN-gamma Induction on Carbohydrate Binding Module of Fungal Immunomodulatory Protein in Human Peripheral Mononuclear Cells. J Agric Food Chem, 2012. 60(19): p. 4914-22.
    78. Ou, C.C., et al., FIP-fve stimulates interferon-gamma production via modulation of calcium release and PKC-alpha activation. J Agric Food Chem, 2009. 57(22): p. 11008-13.
    79. Wang, P.H., et al., Fungal immunomodulatory protein from Flammulina velutipes induces interferon-gamma production through p38 mitogen-activated protein kinase signaling pathway. J Agric Food Chem, 2004. 52(9): p. 2721-5.
    80. Cosgrove, D.J., P. Bedinger, and D.M. Durachko, Group I allergens of grass pollen as cell wall-loosening agents. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(12): p. 6559-64.
    81. Shani, N., et al., Oxidized cellulose binding to allergens with a carbohydrate-binding module attenuates allergic reactions. Journal of immunology, 2011. 186(2): p. 1240-7.
    82. Georgelis, N., et al., Structure-function analysis of the bacterial expansin EXLX1. The Journal of biological chemistry, 2011. 286(19): p. 16814-23.
    83. Chiou, Y.L. and C.Y. Lin, Der p2 activates airway smooth muscle cells in a TLR2/MyD88-dependent manner to induce an inflammatory response. J Cell Physiol, 2009. 220(2): p. 311-8.
    84. Derewenda, U., et al., The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J Mol Biol, 2002. 318(1): p. 189-97.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE