研究生: |
尼特許 Gupta, Nitesh Kumar |
---|---|
論文名稱: |
設計暨合成雙(苯并夫喃-1,3-異環)化合物作為新型抗屈公熱及黃熱病毒之試劑 Design and Syntheses of Bis(benzofuran-1,3-heterocycles)s as New Agents against Chikungunya and Yellow Fever Viruses |
指導教授: |
胡紀如
Hwu, Jih-Ru |
口試委員: |
陳貴通
Tan, Kui-Thong 張家靖 Chang, Chia-Ching 蔡淑貞 Tsay, Shwu-Chen 許銘華 Hsu, Ming-Hua |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 283 |
中文關鍵詞: | 屈公熱 、黃熱 、抗病毒 、苯并夫喃 、異環化合物 、蘇拉明 |
外文關鍵詞: | Chikungunya, Yellow Fever, Antiviral, Benzofuran, Heterocycles, Suramin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去數十年間,,已觀察到許多新型病毒(RNA病毒及新興病毒)散佈至世界各地,,形成未知的疾病。 其中屈公熱病毒 (Chikungunya Virus, CHIKV) 及黃熱熱病毒為最典型例子。這兩種病毒主要透過蚊子傳播,,屈公熱病毒曾在非洲、亞洲及中南美洲爆發大規模之感染,,然而截至今日卻沒有任何具顯著效果之抗病毒藥物。 此外,黃熱病 (yellow fever)為,一種由黃熱病毒所引起之急性出血疾病,, 儘管已有安全可靠之疫苗,,但仍然缺乏治療且抑制該病毒之藥物。此病毒主要流行於熱帶地區,,涵蓋非洲及中南美洲47個國家,,總計9億人口處於可能感染之範圍。
緣此,我們根據suramin類化合物之結構特性設計並合成出了多種新型雙綴合物數種不同類型之新型雙分子化合物,包括其分屬bis(benzofuran–1,3-thiazolidin-4-one)s, bis(benzofuran–1,3-thiazinan-4-one)s,bis(benzofuran–1,3-imidazolidn-4-one)s,bis(benzofuran–benzofuran)s,bis(benzofuran–1,3-oxazolidin-4-one)s及 bis(benzofuran–imidazoline) 6個家族。並並測試以上雙分子化合物其抑制屈公熱病毒之活性。 前述化合物其結構在5員環及6員環中之異原子分別為1,3-N,S, 1,3-N,N, 及1,3-N,O。研究時以我們利用組合化學概念為基礎,利用化學合成法修飾含氮五或六員環上之數種不同取代基,並建立活性化合物之結構活性關係資料庫,並據以探討其結構活性關係時。 其中主要的置換之取代基為alkyl,cycloalkyl,arylalkyl,heteroaromatic 及 substituted aryl等。其中芳香環取代基其上可進一步修飾接上上推電子基或拉電子基,雙分子化合物之中心則以亞甲基關節則作為雙綴合物的中心連接。所有以上合成化合物之結構均透過光譜之鑑定(NMR,IR及Mass)。
所有新型雙分子化合物雙綴合化合物皆已經過抗屈公熱測試、抗YFV測試及、細胞生長抑制測試及結構活性關係之鑑定。 在cpe還原測定中,於Vetro E6細胞中,雙分子化合物雙綴合物2p,2q, 2t,3p,3q,及 3s之活性數據結果極佳。之 於Vetro E6細胞中抗屈公熱病毒活性測試結果極佳,之活性達到EC50介於為1.9至2.7mM 之間,SI值大於介於755或更高。根據抗屈公熱病毒的活性測試之結果,可以知如使用道六員圓環的thiazinanone ring,其活性可能比使用五員圓環的thiazolidinone ring更還要好。一些該等新型雙分子化合物雙綴合物也發現具有抑制Huh-7細胞中YFV strain 17D的效果。其中化合物3u,4e,4n及5k可抑制YFV strain 17D 時,其最佳達到EC50為最低至3.54μM,及SI值最高至為15.3。 根據抗YFV黃熱病毒之測試數據,bis(benzofuran-1,3-N,N-heterocycle)s化合物(如化合物4及5)比其他化合物更具有潛力極佳。 此外,針對其結構、親油性及抗屈公熱病毒之活性分析可成功推導出21種構效分析及guidelines準則等。
論文中兩個主要研究主題,於化學合成方面,即設計合成新型bis(benzofuran-heterocycle)類之各種雙分子化合物,成果豐碩。於生醫醫藥方面,合成出之化合物具極佳之抗屈公熱病毒及抗黃熱病毒之活性,結果不凡。 論文中提及之方法及概念,期可增加全球有機合成及藥物化學相關領域之競合力,於將來研發新型新興病毒之抗病毒藥物時做出貢獻。
Over the past decades, it has been observed that number of new viruses ("RNA viruses and emerging viruses") and other pathogens have spread worldwide, introducing since then unknown diseases into previously unaffected regions. Chikungunya virus (CHIKV) and Yellow fever virus are the best examples of emerging RNA viruses which continuous to cause outbreaks throughout the world. Yellow fever and Chikungunya viruses are transmitted through mosquitoes. There are currently still no approved antiviral drugs to treat or prevent chikungunya virus (CHIKV) infections despite the fact that this arbovirus continues to cause outbreaks in Africa, Asia, and South- and Central-America. Being an acute viral hemorrhagic disease, yellow fever can be prevented by an effective, safe, and reliable vaccine, but cannot be eliminated completely. Unfortunately, there is no antiviral drug available to cure yellow fever. This disease is endemic in tropical areas with a combined population of over 900 million people; most of them are in 47 countries in Africa, Central and South America.
Thus, novel bis-conjugated compounds namely, bis(benzofuran–1,3-thiazolidin-4-one)s, bis(benzofuran–1,3-thiazinan-4-one)s, bis(benzofuran–1,3-imidazolidn-4-one)s, bis(benzofuran–benzofuran)s, bis(benzofuran–1,3-oxazolidin-4-one)s, and bis(benzofuran–imidazoline) were designed based on the structural features of suramin. These new bis-conjugated compounds were synthesized and tested against CHIKV. The hetero atoms in the five- and six-membered rings were 1,3-N,S, 1,3-N,N, and 1,3-N,O. Establishment of structure-activity relationship was done on the basis of chemically synthesized new compounds, in which nitrogen containing five- and six-membered ring were allowed to possess various substituents such as alkyl, cycloalkyl, arylalkyl, heteroaromatic and substituted aryl. The aryl group was allowed to possess different electron donating and electron withdrawing substituents. The methylene joint forms the center of all new bis-cojugates. The structures of all chemically synthesized compounds were confirmed by spectroscopically (NMR, Mass, and IR).
The anti-CHIKV assay, anti-YFV assay, cytostatic determination assays were performed and the structure−activity relationship was established for these new bis-conjugated compounds. In CPE reduction assays, most appealing results were associated with bis-conjugates 2p, 2q, 2t, 3p, 3q, and 3s which inhibited CHIKV replication in Vero E6 cells with EC50 in the range of 1.9 to 2.7 M and selectivity index values of ~75 or higher. Based on the anti-CHIKV activities of the tested compounds, the six-membered thiazinanone ring could be considered superior to the five-membered thiazolidinone ring. Several new bis-conjugated compounds were found to inhibit YFV strain 17D (Stamaril) on Huh-7 cells. The most appealing results were associated with conjugates 3u, 4e, 4n, and 5k which inhibited YFV strain 17D at minimum EC50 of 3.54 μM and maximum selective index value of 15.3. From the anti-YFV assay data we can say that among all the classes, bis(benzofuran-1,3-N,N-heterocycle)s i.e. conjugate 4 and 5 was found to be more potent than other conjugated libraries. Moreover, 22 guidelines were deduced from the analysis of their structures, lipophilicity, anti-CHIKV and anti-YFV activity.
Two major issues have been discussed and solved in this dissertation. These include the design and synthesis of new bis(benzofuran-heterocycle) conjugates and finding anti-CHIKV and anti-YFV leads. By designing and syntheses of these novel anti-CHIKV and -YFV leads, significant contribution has been made in the field of organic and medicinal chemistry, which may be helpful for the researchers around the globe. These results and compounds provide a starting point for further optimization, design, and synthesis of new antiviral agents for these (re)emerging diseases.
6. References:
(1) (a) Hwu, J. R.; Pradhan, T. K., Tsay, S. C.; Kapoor, M.; Bachurin, S. O.; Raevsky, O.A., Neyts, J. 2017. Antiviral agents towards chikungunya virus: structures, syntheses, and isolation from natural sources, in: Tomioka, K., Shiori, T., Sajiki, H. (Eds.), New Horizons of Process Chemistry - Scalable Reactions and Technologies, Springer Nature: Singapore, pp 251–274. (b) Hwu, J. R.; Gupta, N. K.; Tsay, S.-C.; Huang, W.-C.; Albulescu, I. C.; Kovacikova, K.; van Hemert, M. J. Antiviral Res. 2017, 146, 96–101.
(2) McPherson, R. L.; Abraham, R.; Sreekumar, E.; Ong, S.-C.; Cheng, S.-J.; Baxter, V. K.; Kistemaker, H. A. V.; Filippov, D. V.; Griffin, D. E.; Leung, A. K. L. PNAS 2017, 114, 1666–1671.
(3) Thiberville, S.-D.; Moyen, N.; Dupuis–Maguiraga, L.; Nougairede, A.; Gould, E. A.; Roques, P. de Lamballerie, X. Antiviral Res. 2013, 99, 345–370.
(4) Weaver, S. C.; Forrester, N. L. Antiviral Res. 2015, 120, 32–39.
(5) For a review, see: Schwartz, O.; Albert, M. L. Nat. Rev. 2012, 8, 491–500.
(6) World Health Organization, 2017 April. Chikungunya, Fact Sheet. http://www.who.int/mediacentre/factsheets/fs327/en/ (accessed 31.07.17).
(7) Sun, S.; Xiang, Y.; Akahata, W.; Holdaway, H.; Pal, P.; Zhang, X.; Diamond, M. S.; Nabel, G. J.; Rossmann, M. G. eLife 2013, 2, e00435.
(8) Atkins, G. J. ISRN Virol. 2012, 2013, Article ID 861912.
(9) For a review, see: Lahariya, C.; Pradhan, S. K. J. Vector Borne Dis. 2006, 43, 151–60.
(10) Burt, F. J.; Rolph, M. S.; Rulli, N. E; Mahalingam, S.; Heise, M. T. Lancet 2012, 379, 662–671.
(11) Centers for Disease Control and Prevention, 2016 April. Chikungunya Virus- Geographic Distribution. https://www.cdc.gov/chikungunya/geo/index.html (accessed 31.07.17).
(12) Roth, A.; Hoy, D.; Horwood, P. F.; Ropa, B.; Hancock, T.; Guillaumot, L.; Rickart, K.; Frison, P.; Pavlin, B.; Souares, Y. Emerging Infectious Diseases. 2014, 20 (8) (doi:10.3201/eid2008.130696).
(13) Muniaraj, M. Indian J. Med. Res. 2014, 139, 468–70.
(14) McSweegan, E.; Weaver, S. C.; Lecuit, M.; Frieman, M.; Morrison, T. E.; Hrynkow, S. Antiviral Res. 2015, 120, 147–152.
(15) Powers, A. M.; Logue, C. H. J. Gen. Virol. 2007, 88, 2363–2377.
(16) Thomas, S.; Rai, J.; John, L.; Günther, S.; Drosten, C.; Pützer, B. M.; Schaefer, S. Virol. J. 2010, 7, 327–333.
(17) Abdelnabi, R.; Neyts, J.; Delang, L. Antiviral Res. 2015, 121, 59–68.
(18) (a) Abdelnabi, R.; Neyts, J.; Delang, L. Curr. Opin. Virol. 2017, 24, 25–30. (b) Albulescu, I. C.; Kovacikova, K.; Tas, A.; Snijder, E. J.; van Hemert, M. J. Antiviral Res. 2017, 143, 230–236.
(19) Patterson, J.; Sammon, M.; Garg, M. West. J. Emerg. Med. 2016, 17, 671–679.
(20) Furuta, Y.; Gowen, B. B.; Takahashi, K.; Shiraki, K.; Smee, D. F.; Barnard, D. L. Antiviral Res. 2013, 100, 446–454.
(21) Gigante, A.; Canela, M.-D.;, Delang, L.; Priego, E.-M.; Camarasa, M.-J.; Querat, G.; Neyts, J.; Leyssen, P.; Pérez-Pérez, M.-J. J. Med. Chem. 2014, 57, 4000–4008.
(22) Delogu, I.; Pastorino, B.; Baronti, C.; Nougairède, A.; Bonnet, E.; Lamballerie, X. D. Antiviral Res. 2011, 90, 99–107.
(23) Staveness, D.; Abdelnabi, R.; Near, K. E.; Nakagawa, Y.; Neyts, J.; Delang, L.; Leyssen, P.; Wender, P. A. J. Nat. Prod. 2016, 79, 680–684.
(24) Varghese, F. S.; Thaa, B.; Amrun, S. N.; Simarmata, D.; Rausalu, K.; Nyman, T. A.; Merits, A.; McInerney, G. M.; Ng, L. F. P.; Ahola, T. J. Virol. 2016, 90, 9743–9757.
(25) D’hooghe, M.; Mollet, K.; Vreese, R. D.; Jonckers, T. H. M.; Dams, G.; De Kimpe, N. J. Med. Chem. 2012, 55, 5637–5641.
(26) Hwu, J. R.; Kapoor, M.; Tsay, S.-C.; Lin, C.-C.; Hwang, K. C.; Horng, J.-C.; Chen, I.-C.; Shieh, F.-K.; Leyssen, P.; Neyts, J. Antiviral Res. 2015, 118, 103–109.
(27) Briolant, S.; Garin, D.; Scaramozzino, N.; Jouan, A.; Crance, J. M. Antiviral Res. 2004, 61, 111–117.
(28) Jadav, S. S.; Sinha, B. N.; Hilgenfeld, R.; Pastorino, B.; de Lamballerie, X.; Jayaprakash, V. Eur. J. Med. Chem. 2015, 89, 172–178.
(29) Kaur, P.; Thiruchelvan, M.; Lee, R. C. H.; Chen, H.; Chen, K. C.; Ng, M. L.; Chu, J. J. H. Antimicrob. Agents Chemother. 2013, 57, 155–167.
(30) Nothias–Scaglia, L.-F.; Retailleau, P.; Paolini, J.; Pannecouque, C.; Neyts, J.; Dumontet, V.; Roussi, F.; Leyssen, P.; Costa, J.; Litaudon, M. J. Nat. Prod. 2014, 77, 1505–1512.
(31) Gupta, D. K.; Kaur, P.; Leong, S. T.; Tan, L. T.; Prinsep, M. R.; Chu, J. J. H. Mar. Drugs 2014, 12, 115–127.
(32) Tsay, S.-C.; Gupta, N. K.; Bachurin, S. O.; Hwu, J. R. Organic & Medicinal Chem IJ. 2017, 2, 555593.
(33) Albulescu, I. C.; Hoolwerff, M. V.; Wolters, L. A.; Bottaro, E.; Nastruzzi, C.; Yang, S. C.; Tsay, S.-C.; Hwu, J. R.; Snijder, E. J.; van Hemert, M. J. Antiviral Res. 2015, 121, 39–46.
(34) Croci, R.; Pezzullo, M.; Tarantino, D.; Milani, M.; Tsay, S.-C.; Sureshbabu, R.; Tsai, Y. J.; Mastrangelo, E.; Rohayem, J.; Bolognesi, M.; Hwu, J. R. PLoS ONE 2014, 9, e 91765.
(35) Kuo, S. C.; Wang, Y. M.; Ho, Y. J.; Chang, T. Y.; Lai, Z. Z.; Tsui, P. Y.; Wu, T. Y.; Lin, C. C. Antiviral Res. 2016, 134, 89–96.
(36) Ho, Y. J.; Wang, Y. M.; Lu, J. W.; Wu, T. Y.; Lin, L. I.; Kuo, S.-C.; Lin, C.-C. PLoS ONE 2015, 10, e0133511.
(37) Albulescu, I. C.; Kovacikova, K.; Tas, A.; Snijder, E. J.; van Hemert. M. J. Antiviral Res. 2017, 143, 230–236.
(38) For a review, see: Martin, R. R.; Polashock, J. J.; Tzanetakis, I. E. Viruses 2012, 4, 2831–2852.
(39) World Health Organization, 2014 March. Yellow fever, Fact Sheet N100. http://www.who.int/mediacentre/factsheets/fs100/en/ (accessed 18.07.15).
(40) World Health Organization, 2016 May. Yellow fever, Fact Sheet. http://www.who.int/mediacentre/factsheets/fs100/en/ (accessed 30.06.16).
(41) Engelmann, F.; Josset, L.; Girke, T.; Park, B.; Barron, A.; Dewane, J.; Hammarlund, E.; Lewis, A.; Axthelm, M. K.; Slifka, M. K.; Messaoudi, I. PLoS Negl. Trop. Dis. 2014, 8, e3295.
(42) Pacca, C. C.; Marques, R. E.; Espindola J. W. P.; Filho, G. B. O. O,; Leite, A. C. L.; Mauro Teixeira, M.; Nogueira, M. L. Biomed. Pharmacother. 2017, 87, 381–387.
(43) McNeill, J. R. OAH Magazine of History 2004, 18, 9–13.
(44) Bonaldo, M. C.; Caufour, P. S.; Freire, M. S.; Galler, R. Mem. Inst. Oswaldo Cruz 2000, 95, 215–223.
(45) McGee, C. E.; Tsetsarkin, K. A.; Guy, B.; Lang, J.; Plante, K.; Vanlandingham, D. L.; Higgs, S. Plos One 2011, 6, e23247.
(46) (a) Nunes, M.R.T.; Palacios, G.; Cardoso, J. F.; Martins, L. C.; Sousa Jr., E. C.; de Lima, C. P. S.; Medeiros, D. B. A.; Savji, N.; Desai, A.; Rodrigues, S. G.; Carvalho, V. L.; Lipkin, W. I.; Vasconcelos, P. F. C. J. Virol. 2012, 86, 13263–13271. (b) Cui, S.; Pan, Y.; Lyu, Y.; Liang, Y.; Li, J.; Sun, Y.; Dou, X.; Tian, L.; Huo, D.; Chen, L.; Li, X.; Wang, Q. Int. J. Infect. Dis. 2017, 60, 93–95.
(47) Patkar, C. G.; Kuhn, R. J. J. Virol. 2008, 82, 3342–3352.
(48) Sampath, A.; Padmanabhan, R. Antiviral Res. 2009, 81, 6–15.
(49) Löhr, K.; Knox, J. E.; Phong, W. Y.; Ma, N. L.; Yin, Z.; Sampath, A.; Patel, S. J.; Wang, W.-L.; Chan, W.-L.; Rao, K. R. R.; Wang, G.; Vasudevan, S. G.; Keller, T. H.; Lim, S. P. J. Gen. Virol. 2007, 88, 2223–2227.
(50) Kondo, M.Y.; Oliveira, L. C. G.; Okamoto, D. N.; de Araujo, M. R. T.; dos Santos, C. N. D.; Juliano, M. A.; Juliano, L.; Gouvea, I. E. Biochem. Biophys. Res. Commun. 2011, 407, 640–644.
(51) Laurent-Rolle, M.; Morrison, J.; Rajsbaum, R.; Macleod, J. M. L.; Pisanelli, G.; Pham, A.; Ayllon, J.; Miorin, L.; Martínez-Romero, C.; tenOever, B. R.; García-Sastre, A. Cell Host Microbe. 2014, 16, 314–327.
(52) Carpp, L.N.; Galler, R.; Bonaldo, M. C.Microbes Infect. 2011, 13, 85–95.
(53) (a) Perera, R.; Khaliq, M.; Kuhn, R. J. Antiviral Res. 2008, 80, 11–22. (b) Patkar, C. G.; Larsen, M.; Owston, M.; Smith, J. L.; Kuhn, R. J. Antimicrob. Agents Chemother. 2009, 4103–4114.
(54) Centers for Disease Control and Prevention, 2015 August. Yellow fever- Symptoms and Treatment. https://www.cdc.gov/yellowfever/symptoms/index.html (accessed 03.08.17).
(55) (a) Monath, T. P. Antiviral Res. 2008, 78, 116–124. (b) Pacca, C. C.; Marques, R. E.; Espindola, J. W. P.; Filho, G. B. O. O.; Leite, A. C. L.; Teixeira, M. M.; Nogueira, M. L. Biomedicine & Pharmacotherapy 2017, 87, 381–387.
(56) Saudi, M.; Zmurko, J.; Kaptein, S.; Rozenski, J.; Gadakh, B.; Chaltin, P.; Marchand, A.; Neyts, J.; Van Aerschot, A. Eur. J. Med. Chem. 2016, 121, 158–168.
(57) Saudi, M. Zmurko, J.; Kaptein, S.; Rozenski, J.; Neyts, J.; Van Aerschot, A. Eur. J. Med. Chem. 2014, 87, 529–539.
(58) Mayhoub, A.S.; Khaliq, M.; Kuhn, R. J.; Cushman, M. J. Med. Chem. 2011, 54, 1704–1714.
(59) Julander, J.G.; Jha, A. K.; Choi, J.-A; Jung, K.-H.; Smee, D. F.; Morrey, J. D.; Chu, C. K. Antiviral Res. 2010, 86, 261–267.
(60) Tonelli, M.; Paglietti, G.; Boido, V.; Sparatore, F.; Marongiu, F.; Marongiu, E.; La Colla, P.; Loddo, R. Chem. Biodivers. 2008, 5, 2386–2401.
(61) Leyssen, P.; Balzarini, J.; De Clercq, E.; Neyts, J. J. Virol. 2005, 79, 1943–1947.
(62) Huggins, J. W. Rev. Infect. Dis. 1989, 11, S750S761.
(63) Hughes, R. Br. J. Anaesth. 1986, 58, 2S–5S.
(64) Bryson, H. M.; Faulds, D. Drugs 1997, 53, 848–866.
(65) Penumutchu, S. R.; Chou, R.-H.; Yu, C. Biochem. Biophys. Res. Commun. 2014, 454, 404–409.
(66) Press release, 2015. FDA approves new treatment for chronic hepatitis C genotype 3 infections. Available at. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm455888.htm (accessed 14.07.16).
(67) Press release, 2014. FDA approves viekira pak to treat hepatitis C. Available at. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427530.htm (accessed 14.07.16).
(68) (a) Nguewa, P. A.; Fuertes, M. A.; Cepeda, V.; Iborra, S.; Carrión, J.; Valladares, B.; Alonso, C.; Pérez , J. M. Chem. Biodivers. 2005, 2, 1387–1400. (b) Raj, P. A.; Marcus, E.; Rein, R. Angiogenesis 1998, 2, 183–199.
(69) (a) For a review, see: Chand, K.; Rajeshwari, Hiremathad, A.; Singh, M.; Santos, M. A.; Keri, R. S. Pharmacol. Rep. 2017, 69, 281–295. (b) For a review, see: Khanam, H., Shamsuzzaman. Eur. J. Med. Chem. 2015, 97, 483–504.
(70) Narimatsu, S.; Takemi,C.; Kuramoto, S.; Tsuzuki, D.; Hichiya, H.; Tamagake, K.; Yamamoto, S. Chirality 2003, 15, 333–339.
(71) Spaniol, M.; Bracher, R.; Ha, H. R.; Follath, F.; Krähenbühl, S. J. Hepatol. 2001, 35, 628–636.
(72) Cheng, Y.; Ono, M.; Kimura, H.; Kagawa, S.; Nishii, R.; Kawashima, H.; Saji, H. ACS Med. Chem. Lett. 2010, 1, 321–325.
(73) González-Gómez, J. C.; Santana, L.; Uriarte, E. Tetrahedron 2005, 61, 4805–4810.
(74) Kao, C. L.; Chern, J. W. Tet. Lett. 2001, 42, 1111–1113.
(75) Naik, R.; Harmalkar, D. S.; Xu, X.; Jang, K.; Lee, K. Eur. J. Med. Chem. 2015, 90, 379–393.
(76) He, S.; Jain, P.; Lin, B.; Ferrer, M.; Hu, Z.; Southall, N.; Hu, X.; Zheng, W.; Neuenswander, B.; Cho, C.-H.; Chen, Y.; Worlikar, S. A.; Aubé, J.;Larock, R. C.; Schoenen, F. J.; Marugan, J. J.; Liang, T. J.; Frankowski, K. J. ACS Comb. Sci. 2015, 17, 641−652.
(77) For a review, see: Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2008, 43, 897–905.
(78) For a review, see: Tripathi, A. C.; Gupta, S. J.; Fatima, G. N.; Sonar, P. K.; Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2014, 72, 52–77.
(79) Gouvea, D. P.; Vasconcellos, F. A.; dos Anjos Berwaldt, G.; Neto, A. C. P. S.; Fischer, G.; Sakata, R. P.; Almeida, W. P.; Cunico, W. Eur. J. Med. Chem. 2016, 118, 259–265.
(80) Barreca, M. L.; Balzarini, J.; Chimirri, A.; De Clercq, E.; De Luca, L.; Höltje, H. D.; Höltje, M.; Monforte, A. M.; Monforte, P.; Pannecouque, C.; Rao, A.; Zappalà, M. J. Med. Chem. 2012, 45, 5410–5413.
(81) Rao, A.; Balzarini, J.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A. M.; Monforte, P.; Pannecouque, C.; Zappalà, M. Antiviral Res. 2004, 63, 79–84.
(82) Rawal, R. K.; Tripathi, R.; Katti, S. B.; Pannecouque, C.; De Clercq, E. Bioorg. Med. Chem. 2007, 15, 3134–3142.
(83) Chen, H.; Hao, L.; Zhu, M.; Yang, T.; Wei, S.; Qin, Z.; Zhang, P.; Li, X. Bioorg. Med. Chem. Lett. 2014, 24, 3426–3429
(84) Zebardast, T.; Zarghi, A.; Daraie, B.; Hedayati, M.; Dadrass, O. G. Bioorg. Med. Chem. Lett. 2009, 19, 3162−3165.
(85) Kamel, M. M.; Ali, H. A.; Anwar, M. M.; Mohameda, N. A.; Soliman, A. M. M. Eur. J. Med. Chem. 2010, 45, 572−580.
(86) Rudrapal, M.; Chetia, D.; Prakash, A. Med. Chem. Res. 2013, 22, 3703–3711.
(87) Verma, A.; Verma, S. S.; Saraf. S. K. J. Heterocycl. Chem. 2010, 47, 1084−1089.
(88) Qu, H.; Zhang, R.; Hu, Y.; Ke, Y.; Gao, Z.; Xu, H. Z. Naturforsch. 2013, 68 c, 77–81.
(89) Moorkoth, S.; Joseph, A.; Srinivasan, K. K.; Kutty N. G. Int. J. Pharm. Biosci. Technol. 2013, 1, 130–141.
(90) Araújo, M. J.; Bom, J.; Capela, R; Casimiro, C.; Chambel, P.; Gomes, P.; Iley, J.; Lopes, F.; Morais, J.; Moreira, R; de Oliveira, E.; do Rosário, V.; Vale, N. J. Med. Chem. 2005, 48, 888–892.
(91) Sun, Y.; Chen, T.-Y.; Worley, S. D.; Sun, G. Polym. Chem. 2001, 39 3073–3084.
(92) Al-Madi, S. H.; Al-Obaid, A. M.; El-Subbagh, H. I. Anticancer Drugs. 2001, 12, 835–839.
(93) Chern J. H.; Shia K. S.; Chang C. M.; Lee C. C.; Lee Y. C.; Tai C. L.; Lin Y. T.; Chang C. S.; Tseng H. Y. Bioorg. Med. Chem. Lett. 2004, 14, 11691172.
(94) Mario P. J. Med. Chem. 1993, 36, 4214–4220.
(95) Sutherland, R.; Robinson, O. P. W. Brit. Med. J. 1967, 2, 804–808.
(96) Thomsen, C.; Hohlweg, R. Brit. J. Pharm. 2000, 131, 903–908.
(97) Zheng L. T.; Hwang J.; Ock J.; Lee M. G.; Lee W. H.; Suk K. J. Neurochem. 2008, 107, 1225–1235.
(98) Terrón, J. A.; Ibarra, M.; Ransanz, V.; Hong, E.; Villalón, C. M. Archivos del Instituto de Cardiología de México. 1993, 63, 289–295.
(99) Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.; Hong, S. C.; Tsay, S.-C.; Hsu, M.-H.; Hwu J. R. J. Med. Chem. 2009, 52, 1486–1490.
(100) Andrzejewska, M.; Yépez-Mulia, L.; Cedillo-Rivera, R.; Tapia, A.; Vilpo, L.; Vilpo, J.; Kazimierczuk, Z. Eur. J. Med. Chem. 2002, 37, 973–978.
(101) Garuti, L.; Roberti, M.; Malagoli, M.; Rossi, T.; Castelli, M. Bioorg. Med. Chem. Lett. 2000, 10, 2193–2195.
(102) Lukevics, E.; Arsenyan, P.; Shestakova, I.; Domracheva, I.; Nesterova, A.; Pudova, O. Eur. J. Med. Chem. 2001, 36, 507–515.
(103) Komazin, G.; Ptak, R. G.; Emmer, B. T.; Townsend, L. B.; Drach, J. C. Nucleosides, Nucleotides Nucleic Acids 2003, 22, 1725–1727.
(104) Biron, K. K. Antiviral Res. 2006, 71, 154–163.
(105) Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Sparatore, V. B. F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; Ibba, C.; Sanna, G.; Loddo, R.; La Colla, P. Bioorg. Med. Chem. 2010, 18, 2937–2953.
(106) Ishida, T.; Suzuki, T.; Hirashima, S.; Mizutani, K.; Yoshida, A.; Ando, I.; Ikeda, S.; Tsuyoshi Adachi, T.; Hashimoto, H. Bioorg. Med. Chem. Lett. 2006, 16, 1859–1863.
(107) For a review, see: Pandit, N.; Singla, R. K.; Shrivastava, B. Int. J. Med. Chem. 2012, ID 159285. (doi:10.1155/2012/159285)
(108) Shymanska, N. V.; An, I. H.; Pierce, J. G. Angew. Chem. Int. Ed. 2014, 53, 5401–5404.
(109) Gentili, F.; Pizzinat, N.; Ordener, C.; Marchal-Victorion, S.; Maurel, A.; Hofmann, R.; Renard, P.; Delagrange, P.; Pigini, M.; Parini, A.; Giannella, M. J. Med. Chem. 2006, 49, 5578–5586.
(110) Tsujii, S.; Rinehart, K. L. J. Org. Chem. 1988, 53, 54465453.
(111) Delogu, G.; Podda, G.; Corda, M.; Fadda, M. B. F.; Fais, A.; Era, B. Bioorg. Med. Chem. Lett. 2010, 20, 6138–6140.
(112) Cunico, W.; Capri, L. R.; Gomes, C. R. B.; Sizilio, R. H.; Wardell, S. M. S. V. Synthesis 2006, 20, 3405–3408.
(113) Srivastava, T.; Haq, W.; Katti, S. B. Tetrahedron 2002, 58, 7619–7624.
(114) Valeur, E.; Bradley, M.; Chem. Soc. Rev. 2009, 38, 606–631.
(115) Marx, M. A.; Grillot, A.-L.; Louer, C. T.; Beaver, K. A.; Bartlett, P. A. J. Am. Chem. Soc. 1997, 119, 6153–6167.
(116) Plaskon, A. S.; Ryabukhin, S. V.; Volochnyuk, D. M.; Shivanyuk, A. N.; Tolmachev, A. A. Tetrahedron 2008, 64, 5933–5943.
(117) Korthals, K. A.; Wulff, W. D. J. Am. Chem. Soc. 2008, 130, 28982899.
(118) Mahboobi, S.; Uecker, A.;Cénac, C.; Sellmer, A.; Eichhorn, E.; Elz, S.; Böhmerb, F.-D.; Dove, S. Bioorg. Med. Chem. 2007, 15, 2187–2197.
(119) Micklitsch, C. M.; Yu, Q.; Schneider, J. P. Tetrahedron Lett. 2006, 47, 6277–6280.
(120) Varghese, S.; Senanayake,T.; Murray-Stewart, T.; Doering, K.; Fraser, A.; Casero, Jr., R. A.; Woster, P. M. J. Med. Chem. 2008, 51, 2447–2456.
(121) Hung, J. M.; Arabshahi, H. J.; Leung, E.; Reynisson, J.; Barker, D. Eur. J. Med. Chem. 2014, 86, 420–437.
(122) Giraud, L.; Renaud, P. J. Org. Chem. 1998, 63, 9162–9163.
(123) Woodroofe, C. C.; Meisenheimer, P. L.; Klaubert, D. H.; Kovic, Y.; Rosenberg, J. C.; Behney, C. E.; Southworth, T. L.; Bruce R. Branchini, B. R. Biochemistry 2012, 51, 9807−9813.
(124) (a) Anastassiadou, M.; Danoun, S.; Crane, L.; Baziard-Mouysset, G.; Payard, M.; Caignard, D. -H.; Rettori, M. -C.; Renard, P. Bioorg. Med. Chem. 2001, 9, 585–592. (b) Cory, A. H.; Owen, T. C.; Barltrop, J. A.; Cory, J. G. Cancer commun. 1991, 3, 207–212.
(125) For a review, see: Hann, M. M.; Keserü, G. M. Nat. Rev. 2012, 11, 355−365.
(126) Kraszni, M.; Banyai, I.; Noszal, B. J. Med. Chem. 2003, 46, 2241−2245.
(127) Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Comb. Chem. 1999, 1, 55–68.
(128) Ozden, S.; Lucas-Hourani, M.; Ceccaldi, P. E.; Basak, A.; Valentine, M.; Benjannet, S.; Hamelin, J.; Jacob, Y.; Mamchaoui, K.; Mouly, V.; Despres, P.; Gessain, A.; Butler-Browne, G.; Chretien, M.; Tangy, F.; Vidalain, P. O.; Seidah, N. G. J. Biol. Chem. 2008, 283, 21899–21908.
(129) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3−26.
(130) Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Yao, J.; Miao, Z.; Wannian Zhang. Chem. Biol. Drug. Des. 2011, 78, 309–313.
(131) Tsuji, H.; Yamamoto, H. J. Am. Chem. Soc. 2016, 138, 14218−14221.
(132) Sibikina, O. V.; Iozep, A. A.; Passet, B. V. Rus. J. of App. Chem. 2004, 77, 1147–1149.