簡易檢索 / 詳目顯示

研究生: 陳重光
Chen, Chong-Guang
論文名稱: 智慧感測棒球
A Smart Sensing Baseball
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 黃元豪
HUANG, YUAN-HAO
劉強
Liu, Chiang
蔡佩芸
Tsai, Pei-Yun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 73
中文關鍵詞: 棒球球速棒球轉速
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於棒球為我國最受歡迎之球類運動,因此提倡此計畫希望透過科技結合運
    動把運動參數量化盡而達到能讓棒球選手不斷地凸破自我。
    此論文設計出一顆可以植入感測器的智慧棒球, 感測器使用TIMSP432P401R
    為此論文的微處理器,TI 的CC2640R2 為此論文的藍芽,Giga device
    的GD5F2GQ4xf 為此論文的快閃記憶體,另外使用六軸感測器ICM-20649 來量測
    球速以及轉速,使用A301 壓力感測器來量測投手的指力,在投手投出球時,可
    以即時偵測手指出力的力道,以及球速、轉速等等重要的數據,此論文藉由低功
    耗藍芽即時將數據傳輸至電腦端,手指力度最大可以量測到25 磅重的力道,在
    上一個版本,速度及轉速只能提供至每小時100 公里以及600 轉的量測範圍,經
    過一些參數的調整,目前球速最高可提供至每小時120 公里以及轉速2000 轉的
    量測範圍,大大提升此智慧棒球的功能。
    此實驗與國立體大公開組棒球選手一起進行量測,國立體大的投捕距離則是
    正規標準棒球場的18.44 公尺。
    此論文進行了兩種實驗的比較。實驗一為轉速量測實驗,轉速量測是由於根
    據MLB 官方數據顯示,如表格3.10 所示,投手的轉速往往與打者的打擊率及長
    打率成反比,又與揮棒落空的次數成正比,因此若能有效提升投手的轉速,勢必
    有較高機會三振打者,而轉速量測又分成兩種,第一種為原地旋轉量測,此實驗
    搭配可調速馬達以及轉速計來做驗證,均方根誤差約為每分鐘27.7 轉 ,而第二
    種實際投擲棒球的轉速我們是以Rapsodo-Pitching 來做驗證,均方根誤差也僅
    只有約每分鐘47 轉,再來是球速的部分,由於球速往往就代表一名投手最重要
    的數據,因此此論文也對於球速進行量測實驗,而球速的實驗也分成兩種,第一
    種為平均球速的計算搭配高速攝影機來做驗證,此均方根誤差的結果為每小時
    3.2 公里,而第二種瞬時最高球速與測速槍來做驗證,均方根誤差結果為每小時
    5.3 公里。


    Since baseball is the most popular ball game in Taiwan, this project hopes to quantify the
    sports parameters through the combination of technology and sports to achieve the goal of
    allowing baseball players to constantly break through themselves.
    In this thesis, designed a smart baseball that can be implanted with a sensor. For the
    sensor, this thesis used TI-MSP432P401R as our micro controller processor, TI-CC2640R2
    as bluetooth, and GigaDevice’s GD5F2GQ4xf as flash memory of this thesis. In addition, the
    six-axis sensor ICM-20649 is used to measure the ball speed and ball rotation speed, and the
    A301 force sensor is used to measure the pitcher’s finger force. When the pitcher pitch the
    ball, he can instantly detect the strength of the finger force, as well as important data such
    as ball speed and the ball rotation speed. This thesis used low power consumption Bluetooth
    instantly transmits data to the computer. The finger strength can measure up to 25lb. In the
    previous version, ball speed and ball rotation speed can only provide a measurement range
    of 100 km/hr and 600 rpm. The adjustment of parameters, the current maximum ball speed
    can provide a measurement range of 120 km/hr and a rotation speed of 2000 rpm, greatly
    improving the function of this smart baseball.
    In this experiment conducted measurements with varsity baseball team from National Taiwan
    Sport University. The pitching distance is 18.44 meters in the regular standard baseball
    stadium.
    This thesis compares two kinds of experiments. Experiment 1 is a ball rotation speed
    measurement experiment. According to Table 3.10 from official MLB data, the ball rotation
    speed of a pitcher is often inversely proportional to the hit rate and slugging percentage of the
    hitter, and directly proportional to the number of swing miss. Therefore, if it can effectively
    improve the pitcher ball rotation speed is bound to have a higher chance of three-rapping, andthe ball rotation speed measurement is divided into two types. The first type is verified with an
    adjustable speed motor and a tachometer, the root mean square error is about 27.7 rpm. The
    second type used Rapsodo-Pitching to verify the actual speed of the baseball pitch, the root
    mean square error is only about 47 rpm. Because the ball speed often represents one the most
    important data of pitchers, this thesis also conducts ball speed measurement experiments, and
    ball speed experiments are also divided into two types. The first is the calculation of average
    ball speed with a high-speed camera for verification, the root mean square error result is 3.2
    km/hr. The second maximum ball speed is verified with a radar gun, and the root mean square
    error result is 5.3 km/hr.

    Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Baseball Sensing Systems 5 2.1 Image Sensing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 High Speed Camera . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Rapsodo-Pitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Embedded Sensing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Strike Samrt Baseball . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Promark LB-990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Proposed Smart Baseball Sensing System 11 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Sensing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2.1 FlexiForce A301 Sensor . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 6-axis Sensor (ICM-20649) . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Microcontroller (MSP432P401R) . . . . . . . . . . . . . . . . . . . 19 3.3 Embbede System Control End . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Wireless Interface (CC2640R2F) . . . . . . . . . . . . . . . . . . . . 22 3.4 Flash Memory(GD5F2GQ4RBxIG) . . . . . . . . . . . . . . . . . . . . . . 23 3.5 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.1 TI-RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.2 Multi-thread Implementation . . . . . . . . . . . . . . . . . . . . . . 27 3.5.3 Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.6.1 Sensor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7 Average Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.8 Maximum Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.8.1 3-axis Acceleration Frequency Domain Analysis . . . . . . . . . . . 33 3.8.2 Gravity Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.8.3 Vector Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.8.4 Motion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.9 Angular Velocity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Implementation Results 45 4.1 Smart Baseball Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 Circuit Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Ball Rotation Speed Measurement . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Average Ball Speed Measurement . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Maximum Ball Speed Measurement . . . . . . . . . . . . . . . . . . . . . . 62 4.5 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Conclusions and Future Works 67 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Bibliography 71

    [1] G. Fleisig, S. W. Barrentine, N. Zheng, R. Escamilla, and J. Andrews, “Kinematic and
    kinetic comparison of baseball pitching among various levels of development,” Journal
    of Biomechanics, vol. 32, pp. 1371–5, 2000.
    [2] C. Theobalt, I. Albrecht, J. Haber, M. Magnor, H.-P. Seidel, and J. Marks, “Pitching a
    baseball - tracking high-speed motion with multi-exposure images,” ACM Transactions
    on Graphics, v.23, 3, 540-547 (2004), vol. 23, 2004.
    [3] S. L Werner, J. A Guido, R. P McNeice, J. L Richardson, N. A Delude, and G. Stewart,
    “Biomechanics of youth windmill softball pitching,” The American Journal of Sports
    Medicine, vol. 33, pp. 552–60, 2005.
    [4] S. L Werner, D. Jones, J. A Guido, and M. E Brunet, “Kinematics and kinetics of elite
    windmill softball pitching,” The American journal of Sports Medicine, vol. 34, pp. 597–
    603, 2006.
    [5] A. T. Bahill and D. Baldwin, “Describing baseball pitch movement with right-hand
    rules,” Computers in Biology and Medicine, vol. 37, pp. 1001–8, 2007.
    [6] R. Whiteley, “Baseball throwing mechanics as they relate to pathology and performance
    - a review,” Journal of Sports Science Medicine, vol. 6, pp. 1–20, 2007.
    [7] M. Feltner and J. Dapena, “Dynamics of the shoulder and elbow joints of the throwing
    arm during a baseball pitch,” International Journal of Sport Biomechanics, vol. 2, pp.
    235–259, 1986.
    [8] S. W. Barrentine, G. Fleisig, J. A. Whiteside, R. Escamilla, and J. R. Andrews, “Biomechanics
    of windmill softball pitching with implications about injury mechanisms at the
    shoulder and elbow,” The Journal of Orthopaedic and Sports Physical Therapy, vol. 28,
    pp. 405–15, 1999.
    [9] Rapsodo Pitching Setup Guide, Rapsodo, Mar. 2018.
    [10] Jingletek Strike Sales Kit, Jingletek, Aug. 2018.
    [11] Promark lb-990. Promark. [Online]. Available: https://reurl.cc/exrYpM
    [12] H. Kinoshita, S. Obata, D. Nasu, K. Kadota, T. Matsuo, and G. Fleisig, “Finger forces in
    fastball baseball pitching,” Human Movement Science, vol. 54, pp. 172–181, 08 2017.
    [13] T. Matsuo, T. Jinji, D. Hirayama, D. Nasu, H. Ozaki, and D. Kumagawa, “Middle finger
    and ball movements around ball release during baseball fastball pitching,” Sports
    Biomechanics, vol. 17, pp. 180 – 191, 2018.
    [14] Sony NEX-FS700K Operating Manual, Sony, Apr. 2012.
    [15] FlexiForce
    R Standard Model A301, Tekscan, 2016, rev. F.
    [16] World’s First Wide-Range 6-Axis MEMS MotionTrackingTM Device for Sports and High
    Impact Applications, InvenSense, Dec. 2016, rev. 1.0.
    [17] H. Koda, K. Sagawa, K. Kuroshima, T. Tsukamoto, K. Urita, and Y. Ishibashi, “3d
    measurement of forearm and upper arm during throwing motion using body mounted
    sensor,” Journal of Advanced Mechanical Design Systems and Manufacturing - J ADV
    MECH DES SYST MANUF, vol. 4, pp. 167–178, 2010.
    [18] MSP432P401R, MSP432P401M SimpleLink Mixed-Signal Microcontrollers, Texas Instruments,
    Mar. 2015, [Revised Mar 2017].
    [19] Designing an Ultra-Low-Power (ULP) Application with SimpleLink MSP432 Microcontrollers,
    Texas Instruments, Mar. 2015, [Revised Mar 2017].
    [20] CC2640R2F SimpleLink Bluetooth Low Energy Wireless MCU, Texas Instruments, Dec
    2016, [Revised Jan 2017].
    [21] CC2640 and CC2650 SimpleLink Bluetooth Low Energy Software Stack 2.2.1 Developer’s
    Guide, Texas Instruments, Oct 2016.
    [22] GD5F2GQ4xF DATASHEET, GigaDevice, Mar. 2018, rev. 2.0.
    [23] General RTOS concepts. Texas Instruments. [Online]. Available:
    http://dev.ti.com/tirex/content/simplelink academy msp432sdk 1 15 02 00/
    modules/rtos concepts/rtos concepts.html
    [24] TI-RTOS 2.20 User’s Guide, Texas Instruments, Jun. 2016.
    [25] S. Braun, D. Kokmeyer, and P. Millett, “Shoulder injuries in the throwing athlete,” The
    Journal of Bone and Joint Surgery. American Volume, vol. 91, pp. 966–78, 2009.
    [26] K. K. McGinnis R.S., Perkins N.C., “Reconstructing free-flight angular velocity from
    miniaturized wireless accelerometer.” J. Appl. Mech., vol. 79, p. 041013:1–041013:9,
    2012.
    [27] M. Lapinski, E. Berkson, T. Gill, M. Reinold, and J. Paradiso, “A distributed wearable,
    wireless sensor system for evaluating professional baseball pitchers and batters,” 2009,
    pp. 131–138.
    [28] Orientalmotor BMU Manual, Orientalmotor, Sep. 2019.
    [29] HILA DT-2233A Manual, HILA.
    [30] Stalker Sport Digital Sports Radar Operators Manual, Stalker Sport, 2004.
    [31] H. Sarafian, “Trajectory of a baseball and its characters under the influence of a drag
    force and the magnus effect,” in 2011 International Conference on Computational Science
    and Its Applications, 2011, pp. 51–59.

    QR CODE