簡易檢索 / 詳目顯示

研究生: 鄭盟勳
Cheng, Meng-Shiun
論文名稱: 使用多對一遞歸神經網絡和加速點挖掘對使用者興趣點移動預測
Mobility Prediction at Points of Interest Using Many-to-One Recurrent Neural Network and Acceleration Points Mining
指導教授: 許健平
Sheu, Jang-Ping
口試委員: 沈之涯
Shen, Chih-Ya
洪樂文
Hong, Yao-Win
王志宇
Wang, Chih-Yu
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 34
中文關鍵詞: 數據挖掘移動性預測回歸神經網絡長期短期記憶
外文關鍵詞: Mobility_prediction, RNN, LSTM, Data_mining
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著基於位置的服務的出現,用戶移動預測已成為許多應用程序的關鍵驅動
    因素。在本文中,我們提出了一種具有多對一遞歸神經網絡和加速點挖掘
    (MRAPM)的移動預測框架。首先,我們透過提出的POI 挖掘方法- Acceleration
    Clustering,從用戶的移動數據中提取用戶經常訪問的地方(Points of interest,
    POIs)。然後,我們提出了自適應映射方法來將用戶的軌跡映射到一POI 序列。
    接下來,我們使用具有長期短期記憶(Long Short-Term Memory, LSTM)和兩個
    輸出層的遞歸神經網絡(Recurrent Neural Network, RNN)來學習用戶的POI 序
    列。最後,我們用兩個不同的真實數據集評估預測性能。我們還將MRAPM 與
    其他預測框架進行比較,並驗證MRAPM 比以前的作品具有更好的預測準確性。


    With the emergence of location-based services, user mobility prediction has become a key driver for many applications. In this paper, we propose a mobility prediction framework with Many-to-one Recurrent neural network and Acceleration Points Mining (MRAPM). First, we extract the place where the user frequently visited (points of interest, POIs) from the user's mobility data through the proposed POI mining method– Acceleration Clustering. Then, we proposed the Adaptive Mapping method to map the user’s trajectory to a series of POIs. Afterward, we use the Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) and two output layers to learn the user's POI series. Finally, we evaluate the prediction performance with two different real datasets. We also compare the MRAPM with other prediction frameworks and verify that the MRAPM has better prediction accuracy than previous works.

    I. Introduction ........................................................................................................ 1 II. Related Work ...................................................................................................... 4 2.1 POIs Identification ........................................................................................ 4 2.2 Mobility Prediction ........................................................................................ 5 III. Many-to-one Recurrent Neural Network and Acceleration Points Mining (MRAPM) .......................................................................................................... 9 3.1 Preprocess user’s mobility data ..................................................................... 9 3.2 Find Out the POIs of the User ..................................................................... 10 3.3 Calculate the POI Series of the User ........................................................... 14 3.4 Predictor Training ........................................................................................ 15 3.4.1 Training Data Generator ....................................................................... 16 3.4.2 Data Standardizing ............................................................................... 17 3.4.3 Predictor Designing .............................................................................. 17 IV. Performance Evaluation .................................................................................... 20 4.1 Experiment Definition ................................................................................. 20 4.2 Other Mobility Prediction Frameworks Implementation ............................ 21 4.3 Environment ................................................................................................ 23 4.4 Results ......................................................................................................... 23 V. Conclusion ....................................................................................................... 31 References .................................................................................................................... 32

    [1] Q. Lv, Y. Qiao, N. Ansari, J. Liu, and J. Yang, “Big Data-Driven Hidden Markov
    Model Based Individual Mobility Prediction at Points of Interest,” IEEE
    Transactions on Vehicular Technology, Vol. 66, No. 6, pp. 5204-5216, Sep. 2016.
    [2] X. Chen, D. Shi, B. Zhao, and F. Liu, “Periodic Pattern Mining Based on GPS
    Trajectories,” 2016 International Symposium on Advances in Electrical,
    Electronics and Computer Engineering, pp. 181-187, Guangzhou, China, Mar.
    2016
    [3] J. A. Lozano, J. A. G. Macías, and E. Chávez, “Crowd Location Forecasting at
    Points of Interest,” International Journal of Ad Hoc and Ubiquitous Computing,
    Vol. 18, Issue 4, pp. 191-204, Nov. 2015.
    [4] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello, “Extracting Places from
    Traces of Locations,” Proceedings of the 2nd ACM International Workshop on
    Wireless Mobile Applications and Services on WLAN Hotspots, pp. 110-118,
    Philadelphia, Pennsylvania, USA, Oct. 2004.
    [5] M. H. Wong, V. S. Tseng, J. C. C. Tseng, S. W. Liu, and C. H. Tsai, “Long-Term
    User Location Prediction Using Deep Learning and Periodic Pattern Mining,”
    Advanced Data Mining and Applications: 13th International Conference, pp.
    582-594, Singapore, Oct. 2017
    [6] H. Ko, J. Lee, and S. Pack, “MALM: Mobility-Aware Location Management
    Scheme in Femto/Macrocell Networks,” IEEE Transactions on Mobile Computing,
    Vol. 16, Issue 11, pp. 3115-3125, Mar. 2017.
    [7] Y. Endo, K. Nishida, H. Toda, and H. Sawada, “Predicting Destinations from
    Partial Trajectories Using Recurrent Neural Network,” Pacific-Asia Conference on
    Knowledge Discovery and Data Mining, pp. 160-172, Jeju, Korea, Aug. 2017
    [8] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the Next Location: A Recurrent
    Model with Spatial and Temporal Contexts,” Proceedings of the Thirtieth AAAI
    Conference on Artificial Intelligence (AAAI-16), pp. 194-200, Phoenix, Arizona,
    USA, Feb. 2016.
    [9] A. Y. Xue, J. Qi, X. Xie, R. Zhang, J. Huang, and Y. Li, “Solving the Data Sparsity
    Problem in Destination Prediction,” The VLDB Journal, Vol. 24, Issue 2, pp.
    219-243, Apr. 2015.
    [10] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber,
    “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural Networks and
    Learning Systems, Vol. 28, Issue 10, pp. 2222-2232, Jul. 2016.
    [11] J. C. Chen [Personnel survey]. Unpublished raw data, Department of Computer
    Science, National Chiao Tung University, 2017.
    33
    [12] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma, “Mining Interesting Locations and
    Travel Sequences from GPS Trajectories,” Proceedings of the 18th International
    Conference on World Wide Web, pp. 791-800, Madrid, Spain, Apr. 2009.
    [13] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Y. Ma, “Understanding Mobility Based
    on GPS Data,” Proceedings of ACM conference on Ubiquitous Computing
    (UbiComp 2008), pp. 312-321, Seoul, Korea, Sep. 2008.
    [14] Y. Zheng, X. Xie, and W. Y. Ma, “GeoLife: A Collaborative Social Networking
    Service among User, Location, and Trajectory,” IEEE Data Engineering Bulletin.
    33, pp. 32-40. Jun. 2010.
    [15] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda, “A Tale of Ten
    Cities: Characterizing Signatures of Mobile Traffic in Urban Areas,” IEEE
    Transactions on Mobile Computing, Vol. 16, Issue 10, pp. 2682-2696, Dec. 2016.
    [16] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for
    Discovering Clusters in Large Spatial Databases with Noise,” KDD'96 Proceedings
    of the Second International Conference on Knowledge Discovery and Data Mining,
    pp. 226-231, Portland, Oregon, USA, Aug. 1996.
    [17] J. Krumm and E. Horvitz, “Predestination: Inferring Destinations from Partial
    Trajectories,” International Conference on Ubiquitous Computing, pp. 243-260,
    Orange County, California, USA, Sep. 2006.
    [18] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell, “Navigate Like a Cabbie:
    Probabilistic Reasoning from Observed Context-Aware Behavior,” UbiComp '08
    Proceedings of the 10th International Conference on Ubiquitous Computing, pp.
    322-331, Seoul, Korea, Sep. 2008.
    [19] M. T. H. Elbatta and W. M. Ashour, “A Dynamic Method for Discovering Density
    Varied Clusters,” International Journal of Signal Processing, Image Processing
    and Pattern Recognition, Vol. 6, No. 1, pp. 123-134, Feb. 2013.
    [20] S. A. Yaseen, O. Q. Aziz, and B. H. A. Bakar, “Prediction of Shear Strength of
    Ultra High-Performance Reinforced Concrete Deep Beams without Stirrups by
    Neural Network,” Eurasian Journal of Science & Engineering, Vol. 3, Issue. 1,
    pp.142-164, Sep. 2017.
    [21] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities Improve
    Neural Network Acoustic Models,” Proceedings of the 30th International
    Conference on Machine Learning, Atlanta, Georgia, USA, Jun. 2013
    [22] C. M. Bishop, Pattern Recognition and Machine Learning, New York : Springer,
    pp. 198, 2007.
    [23] P. T. D. Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A Tutorial on the
    Cross-Entropy Method,” Annals of Operations Research, Vol. 134, Issue 1, pp.
    19-67, Feb. 2005.
    34
    [24] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,”
    International Conference on Learning Representations, pp. 1-15, San Diego,
    California USA, May 2015.
    [25] hmmlearn: https://github.com/hmmlearn/hmmlearn
    [26] Keras: https://keras.io/
    [27] scikit-learn.DBSCAN:
    http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

    QR CODE