研究生: |
魏敬容 Wei, Jing Rong |
---|---|
論文名稱: |
探討胃幽門螺旋桿菌26695脂多醣參與外膜囊泡之形成與選擇性蛋白質分選 The involvement of lipopolysaccharide in the formation and selective sorting of cargo proteins into outer membrane vesicles derived from Helicobacter pylori 26695 |
指導教授: |
高茂傑
Kao, Mou Chieh |
口試委員: |
張晃猷
Chang, Hwan You 藍忠昱 Lan, Chung Yu |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 胃幽門螺旋桿菌 、外膜囊泡 |
外文關鍵詞: | Helicobacter pylori, outer membrane vesicles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胃幽門螺旋桿菌 (Helicobacter pylori) 是一種呈現螺旋狀並帶有鞭毛的微好氧革蘭氏陰性菌,世界上有超過一半的人口都曾經被此菌所感染,並造成慢性胃部疾病。過去有報導指出,革蘭氏陰性菌在它生長的過程中會不斷從外膜釋放出外膜囊泡 (outer membrane vesicles, OMVs),其功能有幫助傳送致病因子、調控宿主免疫反應與面對壓力之反應。脂多醣 (lipopolysaccharide, LPS) 是胃幽門螺旋桿菌重要毒素之一,同時脂多醣的長度也被認為在外膜囊泡中的蛋白質分選過程中扮演重要的角色。脂多醣的結構有三個部分所組成:包含脂質A (lipid A) 、核寡糖 (core oligosaccharide) 和 O抗原 (O-antigen)。先前我們實驗室已建構出不同脂多醣結構截斷的突變株,包含在inner-core,outer-core,O-antigen,七碳醣生合成路徑(heptose biosynthetic pathway),與第四型分泌系統(cag type Ⅳ secretion system) 產生缺陷。
在本篇研究報告中,我們利用銀染檢視各種突變株的外膜囊泡上不同的脂多醣圖譜 (LPS profile),而這些突變株會根據所帶有的不同長度的脂多醣釋放出不同蛋白總量的外膜囊泡。接著我們利用動態光散射粒徑分析儀 (dynamic light scattering) 分析不同突變株釋放的外膜囊泡之粒徑大小,實驗結果發現,從七碳醣生合成路徑突變株釋放較大直徑的外膜囊泡。我們利用西方墨點法去偵測不同突變株釋放的外膜囊泡中所帶有的毒素因子 (CagA 和 VacA) 與貼附因子 (BabA/B 和AlpA/B),實驗結果顯示主要釋放CagA到外膜囊泡並不是藉由第四型分泌系統,因為在第四型分泌系統中的主要的cagL缺失時,並不會影響CagA在外膜囊泡中的存在。此外,七碳醣生合成路徑突變株所釋放的外膜囊泡所含有毒素與貼附因子也會隨之減少,並且推測脂多醣的結構也會影響貼附因子的醣化作用。最後,我們將不同突變株分離出的外膜囊泡與胃腺癌細胞 (AGS cells) 一同培養,發現七碳醣生合成路徑突變株分離的外膜囊泡所感染的胃腺癌細胞當中的毒素蛋白 CagA 和 VacA 含量明顯減少。綜合以上的實驗結果,胃幽門螺旋桿菌上的脂多醣結構不僅以影響外膜囊泡的形成,也在蛋白質分選到外膜囊泡過程中扮演重要的角色。
Helicobacter pylori is a microaerophilic Gram-negative, spiral-shaped and flagellated bacterium that colonizes more than half of the world’s population and frequently causes chronic infection. Gram-negative bacteria have been reported to release outer membrane vesicles (OMVs) from the outer membrane during their growth. The functions of OMVs include the delivery of virulence factors, modulation of the host’s immune system and stress response. LPS is considered as a key virulence factor of H. pylori and may contribute to sorting of proteins into OMVs. It is composed of lipid A, core oligosaccharide and O-antigen. Previously, our laboratory had constructed various H. pylori LPS truncated mutants, including those having defects in the inner-core, outer-core, O-antigen, heptose biosynthetic pathway, and the
cag type Ⅳ secretion system. In this study, we examined the different LPS profiles of these mutants on OMVs by sliver staining. The amounts of OMVs produced were found to be related to the length (or the structure) of LPS. Using dynamic light scattering analysis, we found that the average size of OMVs derived from the heptose biosynthetic pathway knockout mutants were larger than others. In addition, we
observed the presence of key virulence factors CagA, VacA and various adhesins on OMVs by immunoblotting. The results also suggested that the major route of releasing CagA into OMVs is not through the type Ⅳ secretion system because the
disruption of this system by knocking out cagL, an important component of the type Ⅳ secretion system, did not affect the presence of CagA in OMVs. In addition, CagA and the tested adhesins were significantly reduced in OMV samples collected from the heptose biosynthetic pathway knockout mutants. Furthermore, the change of LPS structure also altered the glycosylation status of the adhesins on OMVs. Moreover, the amount of CagA and VacA present in the whole cell extract of AGS cells were significantly decreased after treating with OMVs derived from the heptose biosynthetic pathway knockout mutants while compared to those treated with OMVs from the wild-type strain. In conclusion, we reported that LPS structure plays an important role not only in the formation of OMVs, but also in the sorting of proteins into OMVs.
[1] Goodwin,CS., Armstrong, J. A., Chilvers, T., Peters, M., Collins, M. D., Sly, L.,Mcconnell, W., and Harper, W. E. S. (1989) Transfer of Campylobacter-Pylori and Campylobacter-Mustelae to Helicobacter Gen-Nov as Helicobacter-Pylori Comb-Nov and Helicobacter Mustelae Comb-Nov, Respectively, Int J Syst Bacteriol 39,397-405.
[2] Marshall, B. J., and Warren, J. R. (1984) nidentified curved bacilli in the stomachof patients with gastritis and peptic ulceration, Lancet 1, 1311-1315.
[3] Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann,R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K.,
Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson,D., Dodson, R., Khalak, H. G., Glodek, A., McKenney, K., Fitzegerald, L. M.,Lee, N., Adams, M. D., Hickey, E. K., Berg, D. E., Gocayne, J. D., Utterback,T. R., Peterson, J. D., Kelley, J. M., Cotton, M. D., Weidman, J. M., Fujii, C.,Bowman, C., Watthey, L., Wallin, E., Hayes, W. S., Borodovsky, M., Karp, P.D., Smith, H. O., Fraser, C. M., and Venter, J. C. (1997) The complete genomesequence of the gastric pathogen Helicobacter pylori, Nature 388, 539-547.
[4] Salama, N. R., Hartung, M. L., and Muller, A. (2013) Life in the human stomach:persistence strategies of the bacterial pathogen Helicobacter pylori, Nature reviews. Microbiology 11, 385-399.
[5] Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics,2002, CA: a cancer journal for clinicians 55, 74-108.
[6] Brown, L. M. (2000) Helicobacter pylori: Epidemiology and routes of transmission,Epidemiol Rev 22, 283-297.
[7] Perez-Perez, G. I., Rothenbacher, D., and Brenner, H. (2004) Epidemiology of Helicobacter pylori infection, Helicobacter 9, 1-6.
[8] Malaty, H. M., and Graham, D. Y. (1994) Importance of childhood socioeconomic status on the current prevalence of Helicobacter pylori infection, Gut 35, 742-745.
[9] Hulten, K., Han, S. W., Enroth, H., Klein, P. D., Opekun, A. R., Gilman, R. H.,Evans, D. G., Engstrand, L., Graham, D. Y., and El-Zaatari, F. A. (1996) Helicobacter pylori in the drinking water in Peru, Gastroenterology 110, 1031-1035.
[10] Sasaki, K., Tajiri, Y., Sata, M., Fujii, Y., Matsubara, F., Zhao, M., Shimizu, S.,Toyonaga, A., and Tanikawa, K. (1999) Helicobacter pylori in the natural
environment, Scandinavian journal of infectious diseases 31, 275-279.
[11] Hulten, K., Enroth, H., Nystrom, T., and Engstrand, L. (1998) Presence of Helicobacter species DNA in Swedish water, Journal of applied microbiology 85, 282-286.
[12] Goodman, K. J., Correa, P., Tengana Aux, H. J., Ramirez, H., DeLany, J. P.,Guerrero Pepinosa, O., Lopez Quinones, M., and Collazos Parra, T. (1996) Helicobacter pylori infection in the Colombian Andes: a population-based study of transmission pathways, American journal of epidemiology 144, 290-299.
[13] Dore, M. P., Sepulveda, A. R., Osato, M. S., Realdi, G., and Graham, D. Y. (1999)Helicobacter pylori in sheep milk, Lancet 354, 132-132.
[14] Axon, A. T. (1995) Review article: is Helicobacter pylori transmitted by the gastrooral route?, Alimentary pharmacology & therapeutics 9, 585-588.
[15] Parsonnet, J., Shmuely, H., and Haggerty, T. (1999) Fecal and oral shedding of
Helicobacter pylori from healthy infected adults, JAMA : the journal of the American Medical Association 282, 240-2245.
[16] Ferguson, D. A., Li, C. F., Patel, N. R., Mayberry, W. R., Chi, D. S., and Thomas,E. (1993) Isolation of Helicobacter pylori from Saliva, J Clin Microbiol 31,
2802-2804.
[17] Gramley, W. A., Asghar, A., Frierson, H. F., and Powell, S. M. (1999) Detection of Helicobacter pylori DNA in fecal samples from infected individuals, J Clin
Microbiol 37, 2236-2240.
[18] Chaudhry, S., Iqbal, H. A., Khan, A. A., Izhar, M., Butt, A. K., Akhter, M. W.,
Izhar, F., and Mirza, K. M. (2008) Helicobacter pylori in dental plaque and gastric mucosa: correlation revisited, JPMA. The Journal of the Pakistan Medical Association 58, 331-334.
[19] O'Toole, P. W., Lane, M. C., and Porwollik, S.(2000) Helicobacter pylori motility,Microbes and infection 2, 1207-1214.
[20] Hawtin, P. R., Stacey, A. R., and Newell, D. G. (1990) Investigation of the structure and localization of the urease of Helicobacter pylori using monoclonal
antibodies, J Gen Microbiol 136, 1995-2000.
[21] Malfertheiner, P., Megraud, F., O'Morain, C., Bazzoli, F., El-Omar, E., Graham, D.,Hunt, R., Rokkas, T., Vakil, N., and Kuipers, E. J. (2007) Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report, Gut 56, 772-781.
[22] Mégraud, F. (2004) H. pylori antibiotic resistance: prevalence, importance, and advances in testing, Gut 53, 1374-1384.
[23] Celli, J. P., Turner, B. S., Afdhal, N. H., Keates, S., Ghiran, I., Kelly, C. P., Ewoldt,R. H., McKinley, G. H., So, P., Erramilli, S., and Bansil, R. (2009) Helicobacter pylori moves through mucus by reducing mucin viscoelasticity, Proceedings of the National Academy of Sciences of the United States of America 106, 14321-
14326.
[24] Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., Suzuki, T., and Sasakawa, C. (2000) Helicobacter
pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells, JExp Med 191, 593-602.
[25] Hoy, B., Lower, M., Weydig, C., Carra, G., egtmeyer, N., Geppert, T., Schroder,P., Sewald, N., Backert, S., Schneider, G., and Wessler, S. (2010) Helicobacter
pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion, EMBO Rep 11, 798-804.
[26] Wunder, C., Churin, Y., Winau, F., Warnecke, D., Vieth, M., Lindner, B., Zahringer, U., Mollenkopf, H. J., Heinz, E., and Meyer, T. F. (2006) Cholesterol glucosylation promotes immune evasion by Helicobacter pylori, Nat Med 12,1030-1038.
[27] Olofsson, A., Vallstrom, A., Petzold, K., Tegtmeyer, N., Schleucher, J., Carlsson, S., Haas, R., Backert, S., Wai, S. N., Grobner, G., and Arnqvist, A. (2010) Biochemical and functional characterization of Helicobacter pylori vesicles,Molecular microbiology 77, 1539-1555.
[28] Arévalo, A., Trespalacios, A. A., and Otero, W. (2009) The importance of CagA protein in Helicobacter pylori infection, Revista Colombiana deGastroenterologia 24, 388-395.
[29] Hatakeyama, M. (2014) Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run arcinogenesis, Cell Host Microbe 15, 306-316.
[30] Terradot, L., and Waksman, G. (2011) Architecture of the Helicobacter pylori Cagtype IV secretion system, FEBS J 278, 1213-1222.
[31] Amieva, M. R., Vogelmann, R., Covacci, A., Tompkins, L. S., Nelson, W. J., and Falkow, S. (2003) Disruption of the epithelial apical-junctional complex by
Helicobacter pylori CagA, Science (New York, N.Y.) 300, 1430-1434.
[32] Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999) Altered states:involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori, Proceedings of the National Academy of Sciences of the United States of America 96, 14559-14564.
[33] Tegtmeyer, N., Wessler, S., and Backert, S. (2011) Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis,
FEBS J 278, 1190-1202.
[34] Ilver, D., Barone, S., Mercati, D., Lupetti, P., and Telford, J. L. (2004) Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent
mechanism, Cell Microbiol 6, 167-174.
[35] Cover, T. L. (1996) The vacuolating cytotoxin of Helicobacter pylori, Molecular microbiology 20, 241-246.
[36] Palframan, S. L., Kwok, T., and Gabriel, K. (2012) Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis, Front Cell Infect Microbiol 2,92.
[37] Jones, K. R., Whitmire, J. M., and Merrell, D. S. (2010) A Tale of Two Toxins:Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease, Front Microbiol 1, 115.
[38] Galmiche, A., and Rassow, J. (2010) Targeting of Helicobacter pylori VacA to mitochondria, Gut microbes 1, 392-395.
[39] Rassow, J. (2011) Helicobacter pylori vacuolating toxin A and apoptosis, Cell communication and signaling 9, 26.
[40] Kim, I.-J., and Blanke, S. R. (2012) Remodeling the Host Environment: Modulation of the Gastric Epithelium by the Helicobacter pylori vacuolating toxin (VacA), Front Cell Infect Mi 2.
[41] Kersulyte, D., Velapatino, B., Mukhopadhyay, A. K., Cahuayme, L., Bussalleu, A.,Combe, J., Gilman, R. H., and Berg, D. E. (2003) Cluster of type IV secretion genes in Helicobacter pylori's plasticity zone, Journal of bacteriology 185,3764-3772.
[42] Hofreuter, D., Odenbreit, S., and Haas, R. (2001) Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system, Molecular microbiology 41, 379-391.
[43] Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion, Science (New York, N.Y.) 287, 1497-1500.
[44] Shaffer, C. L., Gaddy, J. A., Loh, J. T., Johnson, E. M., Hill, S., Hennig, E. E., McClain, M. S., McDonald, W. H., and Cover, T. L. (2011) Helicobacter pylori
exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface, PLoS pathogens 7, e1002237.
[45] Raetz, C. R., and Whitfield, C. (2002) Lipopolysaccharide endotoxins, Annu RevBiochem 71, 635-700.
[46] Walsh, E. J., and Moran, A. P. (1997) Influence of medium composition on the growth and antigen expression of Helicobacter pylori, Journal of applied microbiology 83, 67-75.
[47] Erridge, C., Bennett-Guerrero, E., and Poxton, I. R. (2002) Structure and function of lipopolysaccharides, Microbes and infection / Institut Pasteur 4, 837-851.
[48] Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J., and Moran, A. P. (1996)
Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): structure of the O antigen chain and core oligosaccharide regions,Biochemistry 35, 2489-2497.
[49] Kwon, D. H., Woo, J. S., Perng, C. L., Go, M. F., Graham, D. Y., and El-Zaatari,F. A. (1998) The effect of galE gene inactivation on lipopolysaccharide profile
of Helicobacter pylori, Current microbiology 37, 144-148.
[50] Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel,
E. T., and Zahringer, U. (1988) Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype, Eur J Biochem 177, 483-492.
[51] Moran, A. P. (2007) Lipopolysaccharide in bacterial chronic infection: insights from Helicobacter pylori lipopolysaccharide and lipid A, International journal
of medical microbiology : IJMM 297, 307-319.
[52] Appelmelk, B. J., Martin, S. L., Monteiro, M. A., Clayton, C. A., McColm, A. A., Zheng, P., Verboom, T., Maaskant, J. J., van den Eijnden, D. H., Hokke, C. H.,
Perry, M. B., Vandenbroucke-Grauls, C. M., and Kusters, J. G. (1999) Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes, Infection and immunity 67, 5361-5366.
[53] Appelmelk, B. J., and Vandenbroucke-Grauls, C. (2001) Lipopolysaccharide Lewis Antigens, In Helicobacter pylori: Physiology and Genetics (Mobley, H.L. T., Mendz, G. L., and Hazell, S. L., Eds.), ASM Press, Washington DC.
[54] Marais, A., Mendz, G. L., Hazell, S. L., and Megraud, F. (1999) Metabolism and
genetics of Helicobacter pylori: the genome era, Microbiology and molecular biology reviews : MMBR 63, 642-674.
[55] Li, T., Wen, L., Williams, A., Wu, B., Li, L., Qu, J., Meisner, J., Xiao, Z., Fang, J., and Wang, P. G. (2014) Chemoenzymatic synthesis of ADP-d-glycero-beta-dmanno-heptose and study of the substrate specificity of HldE, Bioorg Med Chem 22, 1139-1147.
[56] McArthur, F., Andersson, C. E., Loutet, S., Mowbray, S. L., and Valvano, M. A.(2005) Functional analysis of the glycero-manno-heptose 7-phosphate kinase domain from the bifunctional HldE protein, which is involved in ADP-Lglycero-D-manno-heptose biosynthesis, Journal of bacteriology 187, 5292-5300.
[57] Kneidinger, B., Marolda, C., Graninger, M., Zamyatina, A., McArthur, F., Kosma, P., Valvano, M. A., and Messner, P. (2002) Biosynthesis pathway of ADP-Lglycero-beta-D-manno-heptose in Escherichia coli, Journal of bacteriology 184,363-369.
[58] Valvano, M. A., Messner, P., and Kosma, P. (2002) Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides, Microbiology(Reading, England) 148, 1979-1989.
[59] De, S. N. (1959) Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae,Nature 183, 1533-1534.
[60] Chatterjee, S. N., and Das, J. (1967) Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae, J Gen Microbiol 49, 1-11.
[61] Bishop, D. G., and Work, E. (1965) An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions, Biochem J 96, 567-576.
[62] Ellis, T. N., and Kuehn, M. J. (2010) Virulence and immunomodulatory roles of bacterial outer membrane vesicles, Microbiology and molecular biology reviews 74, 81-94.
[63] Deatherage, B. L., Lara, J. C., Bergsbaken, T., Rassoulian Barrett, S. L., Lara, S.,and Cookson, B. T. (2009) Biogenesis of bacterial membrane vesicles,
Molecular microbiology 72, 1395-1407.
[64] Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M.,Brandenburg, K., and Whiteley, M. (2008) Interaction of quorum signals with
outer membrane lipids: insights into prokaryotic membrane vesicle formation,Molecular microbiology 69, 491-502.
[65] McBroom, A. J., and Kuehn, M. J. (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response, Molecular microbiology 63, 545-558.
[66] Tashiro, Y., Inagaki, A., Shimizu, M., Ichikawa, S., Takaya, N., Nakajima-Kambe, T., Uchiyama, H., and Nomura, N. (2011) Characterization of phospholipids in
membrane vesicles derived from Pseudomonas aeruginosa, Biosci Biotechnol Biochem 75, 605-607.
[67] Rakoff-Nahoum, S., Coyne, M. J., and Comstock, L. E. (2014) An ecological network of polysaccharide utilization among human intestinal symbionts, Curr
Biol 24, 40-49.
[68] Mashburn, L. M., and Whiteley, M. (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote, Nature 437, 422-425.
[69] Renelli, M., Matias, V., Lo, R. Y., and Beveridge, T. J. (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic
transformation potential, Microbiology (Reading, England) 150, 2161-2169.
[70] Deatherage, B. L., and Cookson, B. T. (2012) Membrane vesicle release in bacteria,eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life, Infection and immunity 80, 1948-1957.
[71] Kaparakis, M., Turnbull, L., Carneiro, L., Firth, S., Coleman, H. A., Parkington, H. C., Le Bourhis, L., Karrar, A., Viala, J., Mak, J., Hutton, M. L., Davies, J. K., Crack, P. J., Hertzog, P. J., Philpott, D. J., Girardin, S. E., Whitchurch, C. B., and Ferrero, R. L. (2010) Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells, Cell Microbiol 12, 372-385.
[72] Davenport, V., Groves, E., Horton, R. E., Hobbs, C. G., Guthrie, T., Findlow, J., Borrow, R., Naess, L. M., Oster, P., Heyderman, R. S., and Williams, N. A.(2008) Mucosal immunity in healthy adults after parenteral vaccination with outer-membrane vesicles from Neisseria meningitidis serogroup B, J Infect Dis 198, 731-740.
[73] Haurat, M. F., Elhenawy, W., and Feldman, M. F. (2015) Prokaryotic membrane vesicles: new insights on biogenesis and biological roles, Biol Chem 396, 95-
109.
[74] Elhenawy, W., Debelyy, M. O., and Feldman, M. F. (2014) Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles,
mBio 5, e00909-00914.
[75] Macdonald, I. A., and Kuehn, M. J. (2013) Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa, Journal of bacteriology 195, 2971-2981.
[76] Ballok, A. E., Filkins, L. M., Bomberger, J. M., Stanton, B. A., and O'Toole, G. A. (2014) Epoxide-mediated differential packaging of Cif and other virulence factors into outer membrane vesicles, Journal of bacteriology 196, 3633-3642.
[77] Veith, P. D., Chen, Y. Y., Gorasia, D. G., Chen, D., Glew, M. D., O'Brien-Simpson, N. M., Cecil, J. D., Holden, J. A., and Reynolds, E. C. (2014) Porphyromonas
gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors, Journal of proteome research 13, 2420-2432.
[78] Murphy, K., Park, A. J., Hao, Y., Brewer, D., Lam, J. S., and Khursigara, C. M. (2014) Influence of O polysaccharides on biofilm development and outer
membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1, Journal of bacteriology 196, 1306-1317.
[79] Haurat, M. F., Aduse-Opoku, J., Rangarajan, M., Dorobantu, L., Gray, M. R., Curtis, M. A., and Feldman, M. F. (2011) Selective sorting of cargo proteins into
bacterial membrane vesicles, The Journal of biological chemistry 286, 1269-1276.
[80] Horstman, A. L., and Kuehn, M. J. (2000) Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles, The Journal of biological chemistry 275, 12489-12496.
[81] Fomsgaard, A., Freudenberg, M. A., and Galanos, C. (1990) Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels, J
Clin Microbiol 28, 2627-2631.
[82] Backert, S., Moese, S., Selbach, M., Brinkmann, V., and Meyer, T. F. (2001) Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is
essential for induction of a scattering phenotype in gastric epithelial cells, Molecular microbiology 42, 631-644.
[83] Backert, S., Schwarz, T., Miehlke, S., Kirsch, C., Sommer, C., Kwok, T., Gerhard, M., Goebel, U. B., Lehn, N., Koenig, W., and Meyer, T. F. (2004) Functional
analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer, Infection and immunity
72, 1043-1056.
[84] Bomberger, J. M., Maceachran, D. P., Coutermarsh, B. A., Ye, S., O'Toole, G. A., and Stanton, B. A. (2009) Long-distance delivery of bacterial virulence factors
by Pseudomonas aeruginosa outer membrane vesicles, PLoS pathogens 5, e1000382.
[85] Zeilstra-Ryalls, J., Fayet, O., and Georgopoulos, C. (1991) The universally conserved GroE (Hsp60) chaperonins, Annu Rev Microbiol 45, 301-325.
[86] Fischer, W., and Haas, R. (2004) The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity, Journal of bacteriology 186, 777-784.
[87] Benz, I., and Schmidt, M. A. (2002) Never say never again: protein glycosylation in pathogenic bacteria, Molecular microbiology 45, 267-276.
[88] Ismail, S., Hampton, M. B., and Keenan, J. I. (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells, Infection and immunity 71, 5670-5675.
[89] Chitcholtan, K., Hampton, M. B., and Keenan, J. I. (2008) Outer membrane vesicles enhance the carcinogenic potential of Helicobacter pylori, Carcinogenesis 29, 2400-2405.