簡易檢索 / 詳目顯示

研究生: 林益慰
Lin, Yi-Wei
論文名稱: 具多再生能源與儲能設備家用微電網之開發
DEVELOPMENT OF A HOME MICROGRID WITH MULTIPLE RENEWABLE SOURCES AND ENERGY STORAGE DEVICES
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 劉添華
Liu, Tain-Hua
陳盛基
Chen, Seng Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 158
中文關鍵詞: 微電網再生能源交錯式升壓轉換器變頻器單相三線式交流波形控制數位控制數位訊號處理器永磁同步發電機儲能系統電池超級電容飛輪
外文關鍵詞: Micro-grid, renewable source, interleaving boost converter, inverter, single-phase three-wire, AC waveform control, digital control, DSP, permanent-magnet synchronous generator, energy storage system, battery, supercapacitor, flywheel
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一具多再生能源與儲能設備家用微電網,其400V共同直流匯流排由各可能電源藉由直流/直流與交流/直流介面轉換器建立之。此處之特定研究包括太陽電池與交流電源,標稱48V之太陽電池藉由兩組交錯式升壓型直流/直流轉換器升壓至400V;而交流電源,則透過適當設計之維也納切換式整流器連接至共同直流匯流排,而交流電源亦可由市電與交流發電機提供。
    所建之儲能系統含一鋰離子電池、一超級電容組及一飛輪,其中因缺乏實用之飛輪設備,於此以一反應輪取代。所有儲能裝置均經由雙向直流/直流轉換器介接至共同直流匯流排,經由適當設計之電力電路與控制機構,可獲得良好之充放電控制性能。於能源管控方面,可由所建之儲能系統快速提供當主電源發生故障時所需之備用能量。而當再生能源長期不足時,則藉由維也納切換式整流器作為插入式充電器對儲能設備進行充電。
    為提供常用之家用交流電源,發展一單相三線式變頻器可從400V直流匯流排轉換產生60Hz 220V/110V之交流輸出。此單相三線變頻器採用市售之三相智慧型功率模組構成,並提出主僕式控制進行220V 及110V兩輸出波形之調節控制,其中兩外臂用以產生220V電壓之輸出,而中間臂則負責調節兩110V輸出波形之平衡。藉由所發展之控制技術,變頻器於未知負載下仍具良好之輸出弦波波形。
    為促進系統小型化,所建微電網中之主直流電源、儲能設備及單相三相變頻器所用之介面轉換器僅利用兩個智慧型功率模組實現,其中並使用智慧型功率模組之兩個煞車臂建構交錯式直流/直流升壓轉換器,至於三相維也納切換式整流器之電力電路則使用其專用功率元件構成。在數位控制實務上,以兩數位訊號處理器實現所有微電網系統之控制法則,其中一數位訊號處理器用於切換式整流器之控制,而另一則用於其他所有功率級之數位控制。


    This thesis presents the development of a home microgrid with multiple renewable sources and energy storage devices. Its 400V common DC bus voltage can be established by DC-DC and AC-DC interface converters from possible sources. The specific sources studied here include photovoltaic (PV) DC and AC sources. The PV source with nominal voltage of 48V is boosted to 400V using two interleaving boost DC/DC converters. As to the AC source, it is connected to the common DC bus via a properly designed Vienna three-phase switch-mode rectifier (SMR). The AC source can be the utility grid and permanent-magnet synchronous generator (PMSG).
    The developed energy storage system consists of a Li-ion battery bank, a super-capacitor bank and a flywheel, and the last one is substituted by an available reaction wheel owing to the lack of facility. Each storage device is interfaced to the 400V common DC bus by a bidirectional DC-DC converter. Through proper designs of power circuit and control scheme, the satisfactory charging and discharging control performances are achieved. In energy management control, the quick programmed energy support from the storage devices can be provided as the main source failure occurs. On the other hand, the established Vienna SMR can also be acted as a plug-in changer to charge the storage devices from the mains for the occurrence of long-term renewable energy exhaustion.
    To provide the commonly used AC sources for the home appliances, a single-phase three-wire (1P3W) inverter is developed to yield 220V/110V AC outputs from the 400V DC grid. An off-the-shelf three phase intelligent power module (IPM) is employed to form this 1P3W inverter, a master and a slave control schemes are proposed to handle the two output waveform regulation controls. While the outside two legs of IPM are arranged to produce the 220V-voltage output, the middle leg is in charge of regulating the balance of two 110V-voltage outputs. Good inverter sinusoidal output waveforms are preserved under unknown loads via the developed control technique.
    In the promotion of system miniaturization, only two IPMs are utilized to form the interfaced converters for the DC main source, the energy storage devices, and the 1P3W load inverter. Wherein the two interleaving DC/DC boost converters are constructed using the two brake legs in the employed IPMs. As to the three-phase Vienna SMR, the dedicated commercial power device is used to form its power circuit. In digital control affair, two digital signal processors (DSPs) are employed to realize all the control algorithms of the whole microgrid system, one for the SMR and the other one for all other power stages.

    ACKNOWLEDGEMENT ........................................i ABSTRACT ...............................................ii LIST OF CONTENTS .......................................iii LIST OF FIGURES ........................................vi LIST OF TABLES .........................................xiii CHAPTER 1 INTRODUCTION .................................1 CHAPTER 2 INTROUDUCTION TO MICRO-GRID AND INTERFACTING POWER CONVERTERS ..........................6 2.1 Introduction .......................................6 2.2 Typical Micro-Grid Systems .........................6 2.3 Distributed and Renewable Sources ..................7 2.4 Energy Storage Devices .............................12 2.5 Some Interfacing DC-DC Converters of Micro-Grid System .................................................13 2.6 Inverters for Micro-Grid System ....................15 2.7 Operating Characteristics of PWM Inverters .........21 2.7.1 Single-Phase Sinusoidal PWM Inverter .............21 2.7.2 Three-Phase SPWM Inverter ........................23 2.8 Switch-Mode Rectifiers .............................26 2.9 System Configuration of the Developed Home Micro-Grid ...................................................27 CHAPTER 3 DEVELOPMENT OF A SWITCH-MODE RECTIFIER BASED PLUG-IN AC/DC CONVERTER ..........................30 3.1 Introduction .......................................30 3.2 Introduction to DSP-Based Digital Control ..........30 3.3 Three-Phase Three-Switch Vienna SMR ................32 3.3.1 Design of Circuit Components .....................38 3.3.2 Control Schemes ..................................46 3.3.3 Simulated Results ................................47 3.3.4 Measured Results of the Established Vienna SMR ...51 CHAPTER 4 ESTABLISHMENT OF COMMON DC BUS VOLTAGE IN DC MICRO-GRID FROM MAIN DC SOURCE ......................55 4.1 Introduction .......................................55 4.2 Some Existing DC-DC Converters .....................55 4.3 Development of Interleaving DC-DC Boost Converter ..61 4.3.1 Power Circuit ....................................64 4.3.2 Control Scheme ...................................65 4.4 Performance Evaluation for the Establish Common DC Bus ....................................................74 CHAPTER 5 ENERGY STORAGE SYSTEM ........................78 5.1 Introduction .......................................78 5.2 Battery Energy Storage System ......................78 5.3 Super-capacitor Energy Storage System ..............81 5.4 Flywheel Energy Storage System .....................83 5.5 The Established Energy Storage System ..............83 5.6 Experimental Results of Energy Storage System ......91 5.6.1 Charging Mode of Battery Bank and Supercapacior ..91 5.6.2 Discharging Mode of Battery Bank .................94 5.6.3 Discharging Mode of Flywheel Energy Storage System .................................................96 CHAPTER 6 SINGLE-PHASE LOAD INVERTER ...................99 6.1 Introduction .......................................99 6.2 Some Possible Single-Phase Three-Wire Inverters ....99 6.3 The Developed Single-Phase Three-Wire Inverter .....100 6.3.1 System Configuration .............................100 6.3.2 Design of Output Filter ..........................103 6.3.3 Control Schemes ..................................105 6.3.4 The Proposed Unified Robust Tracking Error Cancellation Control Methodology .......................107 6.3.5 Digital Control Realization ......................109 6.4 Experimental and Simulated Performance Evaluation of the 1P3W Inverter ..........................................111 6.4.1 Simulated Results of the Establish 1P3W Inverter .112 6.4.2 Measured Results of the Establish 1P3W Inverter ..117 CHAPTER 7 OPERATION CONTROL AND PERFORMANCE ASSESSMENT FOR THE DEVELOPED WHOLE HOME MICROGRID SYSTEM........................................123 7.1 Introduction .......................................123 7.2 System Configuration of the Established Home Micro-Grid System .................................................123 7.3 Experimental Evaluation of the Whole Home Micro-Grid129 CHAPTER8 CONCLUSIONS ............................................148 REFERENCES .............................................150

    A. Distributed Power and Micro-Grid Systems
    [1] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality
    distribution-system configuration and control of distributed generations and energy
    storage devices,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [2] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007,
    pp. 1-6.
    [3] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power
    Energy, vol. 5, no. 4, pp. 78-94, 2007.
    [4] H. Hakigano, Y. Miura and T. Ise, “Configuration and control of a DC microgrid for
    residential houses,” in Proc. IEEE T&D Asia, 2009, pp. 1-4.
    [5] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON,
    2007, pp. 635-642.
    [6] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC voltage control of the DC
    micro-grid for super high quality distribution,” in Proc. IEEE PCCON, 2007, pp.
    518-525.
    [7] D. Kundu, “An overview of the distributed generation (DG) connected to the GRID,”
    in Proc. IEEE ICPST, 2008, pp. 1-8.
    [8] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a
    single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24,
    no. 3, pp. 673-682, 2009.
    [9] M. V. Kirthiga and S. A. Daniel, “Optimal sizing of hybrid generators for autonomous
    operation of a micro-grid,” in Proc. IEEE IEEEI., 2010, pp. 864-868.
    [10] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance
    generator-based common DC microgrid system,” IEEE Trans. Power Electron., to
    appear, 2011.
    [11] G. M. Master, Renewable and Efficiency Electric Power Systems, New York: John
    Wiley & Sons Ltd, 2004.
    [12] J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators:
    operation and modeling,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2752-2758,
    2008.
    [13] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder and P. J. Tavner, “Comparison of
    direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy
    Convers., vol. 21, no. 3, pp. 725-733, 2006.
    [14] K. Amei, Y. Takayasu, T. Ohji and M. Sakui, “A maximum power control of wind
    generator system using a permanent magnet synchronous generator and a boost
    chopper circuit,” in Proc. IEEE PCC., 2002, pp. 1447-1452.
    [15] I. schiemenz and M. Stiebler, “Control of a permanent magnet synchronous generator
    used in a variable speed wind energy system,” in Proc. IEEE IEMDC., 2001, pp.
    872-877.
    [16] M. Heydari, A. Y. Varjani, M. Mohamadian and H. Zahedi, “A novel variable-speed
    wind energy system using permanent-magnet synchronous generator and nine-switch
    AC/AC converter,” in Proc. IEEE PEDSTC., 2010, pp. 5-9.
    [17] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for
    switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp.
    445-454, 2008.
    B. Switch-mode Rectifiers
    [18] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A
    review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind.
    Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [19] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering
    nonlinear behaviour,” IET Proc. Elect. Power Appl., vol. 1, no .3, pp. 316-328, 2007.
    [20] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A
    review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind.
    Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [21] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase
    high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334,
    1998.
    [22] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-peluctance motor drive
    with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power
    Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    [23] U. Drofenik and J. W. Kolar, “Comparison of not synchronized sawtooth carrier and
    synchronized triangular carrier phase current control for the VIENNA rectifier I,” in
    Proc. IEEE ISIE, 1999, vol. 1, pp. 13-19.
    [24] J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a
    three-phase high power density high efficiency unity power factor PWM (VIENNA)
    rectifier employing a novel integrated power semiconductor module,” in Proc. APEC,
    1996, vol. 2, pp. 514-523.
    [25] C. M. Qiao and K. M. Smedley, “Three-phase unity-power-factor star-connected
    switch (VIENNA) rectifier with unified constant-frequency integration control,” IEEE
    Trans. Power Electron., vol. 18, no. 4, pp. 952-957, 2003.
    [26] J. Minibock and J. W. Kolar, “Novel concept for mains voltage proportional input
    current shaping of a VIENNA rectifier eliminating controller multipliers,” IEEE
    Trans. Ind. Electron., vol. 52, no. 1, pp. 162-170, 2005.
    [27] N. B. Hadj-Youssef, K. Al-Haddad, H.Y. Kanaan and F. Fnaiech, “Small-signal
    perturbation technique used for DSP-based identification of a three-phase three-level
    boost-type Vienna rectifier,” IET Proc. Elect. Power Appl., vol. 1, no. 2, pp. 199-208,
    2007.
    [28] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Real-time implementation of a
    discrete nonlinearity compensating multiloops control technique for a 1.5-kW
    three-phase/switch/level Vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no.
    3, pp. 1225-1234, 2008.
    [29] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Large-signal modeling and
    steady-state analysis of a 1.5-kW three-phase/switch/level (Vienna) rectifier with
    experimental validation,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1213-1224,
    2008.
    [30] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear
    control technique based on experimentally validated small-signal model of
    three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol.
    55, no. 4, pp. 1666-1676, 2008.
    [31] Rectifier Module VUM 25-05 for Three Phase Power Factor Correction Data
    Manual, IXYS Co., U.S.A., 2000.
    [32] C. H. Yeh, “DSP-based inverter systems with three-phase switch-mode rectifier
    front-end,” Master Thesis, Department of Electrical Engineering, National Tsing Hua
    University, Hsinchu, ROC., 2009.
    [33] A. B. Morton and I. M. Y. Mareels, “A generalized dynamical model for three-phase
    switch-mode converter circuits,” IEEE Trans. Power Electron., vol. 18, no. 4, pp.
    994-1001, 2003.
    [34] Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase
    boost rectifiers,” in Proc. PESC, 1994, vol. 2, pp. 1158-1163.
    [35] T. Jin, L. Li and K. M.Smedley, “A universal vector controller for four-quadrant
    three-phase power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp.
    377-390, 2007.
    [36] R. Zhang, F. C. Lee and D. Boroyevich, “Four-legged three-phase PFC rectifier with
    fault tolerant capability,” in Proc. PESC, 2000, vol. 1, pp. 359-364.
    [37] S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using
    single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79,
    2004.
    C. DC/DC Converters and Front-End Converters
    [38] I. Sefa and O. Ozdemir, “Experimental study of interleaved MPPT converter for PV
    systems,” in Proc. IEEE IECON., 2009, pp. 456-461.
    [39] W. Li and X. He, “A family of isolated interleaved boost and buck converters with
    winding-cross-coupled inductors,” IEEE Trans. Power Electron., vol. 23, no. 6, pp.
    3164-3173, 2008.
    [40] I. Sefa and S. Ozdemir, “Multifunctional interleaved boost converter for PV systems,”
    in Proc. IEEE ISIE., 2010, pp. 951-956.
    [41] W. Li, Y. Zhao, Y. Deng and X. He, “Interleaved converter with voltage multiplier
    cell for high step-up and high-efficiency conversion,” IEEE Trans. Power Electron.,
    vol. 25, no. 9, pp. 2397-2408, 2010.
    [42] I. Cervantes, A. Mendoza-Torres, A. R. Garcia-Cuevas and F. J. Perez-Pinal,
    “Switched control of interleaved converters,” in Proc. IEEE VPPC., 2009, pp.
    1156-1161.
    [43] R. Gules, L. L. Pfitscher and L. C. Franco, “An interleaved boost DC-DC converter
    with large conversion ratio,” in Proc. IEEE ISIE., 2003, pp. 411-416.
    [44] S. Y. Tseng, C. L. Ou, S. T. Peng and J. D. Lee, “Interleaved coupled-inductor boost
    converter with boost type snubber for PV system,” in Proc. IEEE ECCE., 2009, pp.
    1860-1867.
    [45] A. S. Samosir, M. Anwari and A. H. M. Yatim, “Dynamic evolution control of
    interleaved boost DC-DC converter for fuel cell application,” in Proc. IEEE IPEC.,
    2010, pp. 869-874.
    [46] H. van der Broeck and I. Tezcan, “1 kw dual interleaved boost converter for low
    voltage applications,” in Proc. IEEE IPEMC., 2006, pp. 1-5.
    [47] H. Kosai, S. Mcneal, B. Jordan, J. Scofield, B. Ray and Z. Turgut, “Coupled inductor
    characterization for a high performance interleaved boost converter,” IEEE Trans.
    Magn., vol. 45, no. 10, pp. 4812-4815, 2009.
    [48] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a
    bidirectional DC-DC converter for the DC link voltage control and the regenerative
    braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC,
    1994, vol. 1, pp. 381-389.
    [49] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a
    buck-boost bidirectional DC-DC converter topology for electrical vehicle motor
    drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [50] M. Jain, Jain, P.K. and M. Daniele, “Analysis of a bi-directional DC-DC converter
    topology for low power application,” in Proc. IEEE CCECE, 1997, vol.2, pp.
    548-551.
    [51] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional
    buck-boost converter topologies for application in electrical vehicle motor drives,” in
    Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [52]
    H. Xu, G. Ma, C. Sun, X. Wen and L. Kong, “Implementation of a bi-directional
    DC-DC converter in FCEV,” in Proc. ICEMS, 2003, vol. 1, pp. 375-378.
    [53] M. Cacciato, F. Caricchi, F. Giuhlii and E. Santini, “A critical evaluation and design
    of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell
    applications,” in Proc. IEEE IAS, 2004, vol. 2, no.2, pp. 1127-1133.
    [54] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters
    for electric and hybrid vehicles,” in Proc. IEEE VPPC., 2005, pp. 552-555.
    [55] J. Leuchter, P. Bauer, P. Bojda and V. Rerucha, “Bi-directional DC-DC converters for
    supercapacitor based energy buffer for electrical gen-sets,” in Proc. ECPEA, 2007, pp.
    1-10.
    [56] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC
    converter with decoupled power flow management,” IEEE Trans. Power Electron.,
    vol. 23, no. 5, pp. 2443-2453, 2008.
    [57] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept
    for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24,
    no. 6, pp. 1437-1443, 2009.
    [58] Y. Du, X. Zhou, S. Bai, S. Lukic and A. Huang, “Review of non-isolated
    bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station
    application at municipal parking decks,” in Proc. APEC, 2010, pp. 1145-1151.
    [59] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC
    converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25,
    no. 7, pp. 1877-1887, 2010.
    [60] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery
    powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no.
    4, pp. 2143-2156, 2008.
    D. Energy Storage Systems
    [61] L. Shengyi and R. A. Dougal, “Design and analysis of a current-mode controlled
    battery/ultracapacitor hybrid,” in Proc. IEEE IAS, 2004, vol. 2, pp. 1140-1145.
    [62] A. Yoshida, K. Imoto, H. Yoneda and A. Nishimo, “An electric double-layer
    capacitor with high capacitance and low resistance,” IEEE Trans. Compon. Hybrids,
    Manufacturing Manuf. Technol., vol. 15, no. 1, pp. 133-138, 1992.
    [63] C. Zhu, R. Lu, L. Tian and Q. Wang, “The development of an electric bus with
    super-capacitors as unique energy storage,” in Proc. VPPC., 2006, pp. 1-5.
    [64] T. A. Nergaard, J. F. Ferrell, L. G. Leslie and J. S. Lai, “Design considerations for a
    48V fuel cell to split single phase inverter system with ultracapacitor energy storage,”
    in Proc. PESC, 2002, pp. 2007-2012.
    [65] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled
    battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp.
    236-243, 2005.
    [66] D. L. Cheng and M. G. Wismer, “Active control of power sharing in a
    battery/ultracapacitor hybrid source,” in Proc. IEEE ICIEA, 2007, pp. 2913-2918.
    [67] F. S. Garcia, A. A. Ferreira and J. A. Pomilio, “Control strategy for
    battery-ultracapacitor hybrid energy storage system,” in Proc. IEEE APEC, 2009, pp.
    826-832.
    [68] P. Thounthong, S. Rael and B. Davat, “Analysis of supercapacitor as second source
    based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1,
    pp. 247-255, 2009.
    [69] A. W. Stienecker, T. Stuart and C. Ashtiani, “A combined ultracapacitor-lead acid
    battery storage system for mild hybrid electric vehicles,” in Proc. IEEE VPPC, 2005,
    pp. 350-355.
    [70] S. M. Lukic, S. G. Wirasingha, F. Rodriguez, C. Jian and A. Emadi, “Power
    management of an ultracapacitor/battery hybrid energy storage system in an HEV,” in
    Proc. IEEE VPPC, 2006, pp. 1-6.
    [71] L. Shuai, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy
    storage system design and its motor drive integration for hybrid electric vehicles,”
    IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
    [72] M. Ortuzar, J. Moreno and J. Dixon, “Ultracapacitor-based auxiliary energy system
    for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron.,
    vol. 54, no. 4, pp. 2147-2156, 2007.
    [73] J. Bauman and M. Kazerani, “A comparative study of fuel-cell-battery,
    fuel-cell-ultracapacitor, and fuel-cell-battery-ultracapacitor vehicles,” IEEE Trans.
    Veh. Technol., vol. 57, no. 2, pp. 760-769, 2008.
    [74] A. B. Cultura and Z. M. Salameh, “Performance evaluation of a supercapacitor
    module for energy storage applications,” in Proc. IEEE PES, 2008, pp. 1-7.
    [75] C. Jian and A. Emadi, “A new battery/ultra-capacitor hybrid energy storage system
    for electric, hybrid and plug-in hybrid electric vehicles,” in Proc. IEEE VPPC, 2009,
    pp. 941-946.
    [76] L. Zhihao, O. Onar, A. Khaligh and E. Schaltz, “Design and control of a multiple
    input DC/DC converter for battery/ultra-capacitor based electric vehicle power
    system,” in Proc. IEEE APEC, 2009, pp. 591-596.
    [77] A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine
    power smoothing,” in Proc. IEEE IECON, 2008, pp. 3347-3351.
    [78] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC micro-grid for super high quality
    distribution - system configuration and control of distributed generations and energy
    storage devices- ,” in Proc. IEEE PESC, 2006, pp. 1-7.
    E. Inverters and PWM Switching Methods
    [79] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters,
    Applications and Design, 1st ed., New York: John Wiley & Sons Ltd, 2003.
    [80] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters:
    Principles and Practice, New York: John Wiley & Sons Ltd, 2003.
    [81] B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed., New Jersey:
    Prentice-Hall, 2002.
    [82] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of
    single-phase inverters for small distributed power generators: an overview,” IEEE
    Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [83] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of
    single-phase buck-boost inverters for small distributed power generators: an
    overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
    [84] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,”
    IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [85] E. Jung and S. K. Sul, “Implementation of grid-connected single-phase inverter based
    on FPGA,” in Proc. IEEE APEC, 2009, pp. 889-893.
    [86] A. C. Kyritsis, E. C. Tatakis and N. P. Papanikolaou, “Optimum design of the
    current-source flyback inverter for decentralized grid-connected photovoltaic
    systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008.
    [87] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated
    converter topologies with three different DC link configurations,” IEEE Trans. Power
    Electron., vol. 23, no. 3, pp. 1320-1333, 2008.
    [88] T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters
    connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
    [89] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE
    Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [90] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly
    grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1,
    pp. 93-101, 2009.
    [91] R. Gonzalez, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase
    multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp.
    2694-2702, 2008.
    [92] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for
    single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp.
    693-697, 2007.
    [93] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed
    electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
    [94] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “Control of single-stage single-phase
    PV inverter,” in Proc. EPE, 2005, pp. 1-10.
    [95] N. M. Abdel-Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback
    loop control strategy for single-phase voltage-source UPS inverters,” IEEE Trans.
    Power Electron., vol. 11, no. 4, pp. 532-541, 1996.
    [96] H. Abe and H. Fujimoto, “Multirate prfect tracking control of single-phase inverter
    with inter sampling for arbitrary waveform,” in Proc. PCCON, 2007, pp. 810-815.
    [97] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and
    design of a repetitive predictive-PID controller for PWM inverters,” in Proc. PESC,
    2001, vol. 2, pp. 17-21.
    [98] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with
    fixed switching frequency,” IEE Proc. Elect. Power Appl., 2001, vol. 148, no. 6, pp.
    503-512.
    [99] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system
    employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp.
    149-158, 2009.
    [100] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor
    nonlinear behavior on the performance of current controllers for single-phase PV grid
    converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008.
    [101] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current
    control scheme with series resonant harmonic compensator for single-phase
    grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp.
    2724-2733, 2008.
    [102] W. Shireen and H. R. Nene, “DSP-based control for reliable fuel cell power systems
    with input ripple current compensation,” in Proc. PES, 2008, pp. 1-4.
    [103] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input
    DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4,
    pp. 65-70.
    [104] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for
    inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron.,
    vol. 7, no. 1, pp. 65-70, 1993.
    [105] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for
    single-phase PWM inverters,” in Proc. PEDS, 1995, vol. 2, pp. 571-576.
    [106] H. Kim and K.H. Kim, “Filter design for grid connected PV inverters,” in Proc.
    ICSET, 2008, pp.1070-1075.
    [107] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter
    considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp.
    1659-1664.
    [108] S. Vukosavic, L. Peric, E. Levi and V. Vuckovic, “Reduction of the output impedance
    of PWM inverters for uninterruptible power supply,” in Proc. IEEE PESC, 1990, pp.
    757-762.
    [109] T. C. Y. Wang, Y. Zhihong, S. Gautam and Y. Xiaoming, “Output filter design for a
    grid-interconnected three-phase inverter,” in Proc. IEEE PESC, 2003, vol. 2, pp.
    779-784.
    F. Others
    [110] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic
    System, 4th ed., New Jersey, Prentice Hall Inc., 2002.
    [111] “Digital signal controller TMS320F28335 datasheet,” http://www.ti.com/lit/gpn
    /tms320f28335
    [112] “Mitsubishi semiconductor CM100RL-12NF datasheet,” http://www.mitsubishichips.
    com/Global/content/product/power/powermod/igbtmod/nf/cm100rl-12nf_e.pdf
    [113] Y. L. Yang, “Development and digital control of inverter systems with galvanic
    isolation and front-end SMR,” Master Thesis, Department of Electrical Engineering,
    National Tsing Hua University, Hsinchu, ROC., 2008.
    [114] Y. C. Chang, “Development of a switched-reluctance generator and its application to
    the establishment of microgrid system” Ph.D. Dissertation, Department of Electrical
    Engineering, National Tsing Hua University, Hsinchu, ROC., 2010.
    [115] M. C. Chou, “Development of a permanent magnet synchronous motor driven satellite
    reaction wheel system” Ph.D. Dissertation, Department of Electrical Engineering,
    National Tsing Hua University, Hsinchu, ROC., 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE