簡易檢索 / 詳目顯示

研究生: 林佩宜
Lin, Pei-Yi
論文名稱: 人類胚胎幹細胞培養、分化及冷凍之研究
Cultivation, Differentiation, and Cryopreservation of Human Embryonic Stem Cells
指導教授: 朱一民
Chu, I-Ming
口試委員: 黃效民
陳婉昕
劉繼賢
姚少凌
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 人類胚胎幹細胞合成表面培養分化胰島素分泌細胞冷凍
外文關鍵詞: Human embryonic stem cells, Synthetic surface, Cultivation, Differentiation, Insulin-producing cells, Cryopreservation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類胚胎幹細胞由於其自我更新及多能性的細胞特性,使其成為再生醫學、細胞治療及臨床移植上一個重要的細胞來源。然而,在真正進入實際應用之前,它仍有許多亟需克服的障礙。在本研究中將分別針對:體外培養、誘導分化及冷凍保存三個方向著手進行改善。
    首先,我們利用經合成胜肽-丙烯聚酯修飾的表面材質(Synthemax®)取代Matrigel於成分確定的培養基(mTeSR™1)內進行人類胚胎幹細胞的增殖,我們進一步確認細胞經過十次的繼代後仍表現多能性的標誌以及保有分化成三胚層細胞的能力,更重要的是其仍維持正常的染色體。接著,我們建立一不含血清的誘導分化培養基能使人類胚胎幹細胞有效率地分化成為定型內胚細胞(86%),我們甚至可讓人類胚胎幹細胞經三階段共21天的誘導培養基中順利分化成為胰島素分泌細胞(25%),且在免疫螢光染色及定量的基因分析結果中,我們發現細胞於Matrigel或Synthemax®表面上進行分化誘導所得之效率並無顯著差異。因此,Synthemax®不僅可以作為人類胚胎幹細胞的長期培養平台,亦可在其上進行胰島素分泌細胞的誘導分化以成為未來糖尿病患者的細胞治療來源。
    最後,我們利用一結合動態磁場的程式降溫儀Cell Alive System (CAS)進行人類胚胎幹細胞的冷凍保存,以減少降溫過程中冰晶所造成之冷凍傷害。我們將人類胚胎幹細胞團塊回溶於冷凍培養基中分成三組:(1) 細胞於傳統的冷凍保存容器Mr. Frosty並置於-80度冰箱降溫(MF);(2) 細胞利用CAS降溫至-32度後改置於-80度冰箱(CAS);(3) 細胞利用CAS降溫至-32度後改放於預冷之Mr. Frosty並置於-80度冰箱降溫(CAS-MF)。隔夜,所有冷凍管皆保存於液態氮內,一周後將人類胚胎幹細胞解凍並培養於餵養細胞上7天。由鹼性磷酸酶的染色結果計算細胞凍後貼附率,經CAS或CAS-MF冷凍保存之貼附率分別為29.0%及44.0%,皆優於經MF冷凍保存之7.0%。我們更進一步確認細胞經CAS-MF冷凍保存後仍能持續繼代並表現多能性標誌,以及保有分化成三胚層細胞的能力並維持正常的染色體。由以上結果可知CAS-MF將可提供人類胚胎幹細胞庫一個更有效率的冷凍保存方式。


    Human embryonic stem cells (hESCs), due to their self-renewal capacity and pluripotency, are an important source of cells for regenerative medicine, cell therapy, and clinical transplantation. However, there are still many immediate obstacles that need to be addressed before their practical application. In this study, we focus on three avenues for improvement: cultivation, differentiation, and cryopreservation.
    First, we replaced common Matrigel with a synthetic peptide-acrylate surface (Synthemax®) in defined mTeSR™1 medium to expand undifferentiated hESCs. We confirmed that the cells still expressed pluripotency markers, had the ability to differentiate into three germ layers, and maintained a normal karyotype after 10 passages of subculture. Next, we reported an efficient protocol for deriving nearly 86% definitive endoderm cells from hESCs under serum-free conditions. We were also able to obtain 25% insulin-producing cells within 21 days by following a simple three-step protocol. Moreover, the results of immunocytochemical and quantitative gene expression analyses showed that the efficiency of induction was not significantly different between the Synthemax® surface and the Matrigel-coated surface. Thus, Synthemax® could be a stable substrate for the long-term culture of hESCs, and the differentiated insulin-producing cells could be a therapeutic resource for diabetic patients in the future.
    Last, we used the Cell Alive System (CAS), which combines a programmed freezer with an oscillating magnetic field to reduce cryo-injury during the freezing process. The hESC clumps suspended in freezing medium were divided into three groups: (i) cells frozen by a conventional freezing container, Mr. Frosty, and kept in a -80°C freezer (MF); (ii) cells frozen to -32°C by CAS, and then transferred to a -80°C freezer (CAS); and (iii) cells frozen to -32°C by CAS, and then transferred to a pre-cooled Mr. Frosty and kept in a -80°C freezer (CAS-MF) overnight. All cryovials were placed in liquid nitrogen for one week, and hESCs were then thawed and cultured on feeder cells for 7 days. The results of alkaline phosphatase (AP) staining showed that the attachment efficiency of the cells cryopreserved by CAS and CAS-MF was significantly higher (29.0% and 44.0%) than that achieved using the MF method (7.0%). Furthermore, we confirmed that cells cryopreserved using CAS-MF could be subcultured while expressing pluripotency markers, could differentiate into the three germ layers, and could maintain a normal karyotype. These results demonstrate that the use of CAS-MF offers an efficient method for hESC banking.

    Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Stem cells 3 2.2 Pluripotent stem cells (PSCs) 3 2.3 Human embryonic stem cells (hESCs) 4 2.4 Cultivation of hESCs 5 2.5 Differentiation of hESCs 7 2.6 Cryopreservation of hESCs 8 Chapter 3 Materials and methods 13 3.1 Human embryonic stem cells (hESCs) culture 13 3.1.1 Feeder culture system (MEF) 13 3.1.2 Feeder-free culture system (Matrigel) 13 3.1.3 Defined culture system establishment 14 3.2 Differentiation of hESCs into insulin-producing cells 15 3.2.1 Single-cell seeding conditions 15 3.2.2 Definitive endoderm (DE) cell differentiation 15 3.2.3 Insulin-producing cells differentiation studies 17 3.3 Cryopreservation of hESCs 18 3.3.1 Freezing methods 18 3.3.2 Attachment efficiency after cryopreservation 19 3.4 Characterization of hESCs 20 3.4.1 Alkaline phosphatase (AP) staining 20 3.4.2 In vitro differentiation (embryoid body formation) 20 3.4.3 In vivo differentiation (teratoma formation) 20 3.4.4 Karyotype analysis 21 3.5 Methods of biochemical analysis 21 3.5.1 Immunocytochemical staining 21 3.5.2 Flow cytometry 22 3.5.3 RT-PCR and Quantitative RT-PCR 23 3.6 Statistical analysis 24 Chapter 4 Results and discussion (1) - Defined culture system for TW hESCs 25 4.1 Maintenance of hESCs on MEFs and Matrigel 25 4.2 Defined Culture media study 25 4.3 Characterization of hESCs in defined culture system 26 4.4 Discussion 27 Chapter 5 Results and discussion (2) - Directed differentiation of hESCs into insulin-producing cells 37 5.1 Single-cell seeding condition 37 5.2 DE cell differentiation study 38 5.3 Insulin-producing cell differentiation study 39 5.4 Discussion 40 Chapter 6 Results and discussion (3) - Cryopreservation of hESCs by Cell Alive System (CAS)…….. ………………………………………………………………………………57 6.1 Attachment efficiency of hESCs after cryopreservation 57 6.2 Characterization of hESCs after cryopreservation 57 6.3 Discussion 58 Chapter 7 Conclusions 67 Appendices 68 Appendix A. Endodermal progenitor cell (EPC) line establishment 68 Appendix B. Cryopreservation of hESCs (single-cell) by CAS 71 References 73 Curriculum Vitae 80

    1. Unger, C., et al., Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet, 2008. 17(R1): p. R48-53.
    2. Aznar, J. and J.L. Sanchez, Embryonic stem cells: are useful in clinic treatments? J Physiol Biochem, 2011. 67(1): p. 141-4.
    3. Villa-Diaz, L.G., et al., Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p. 1-7.
    4. Zimmet, P., M. Alberti, and J. Shaw, Global and societal implications of the diabetes epidemic. Nature, 2001. 414: p. 782-787.
    5. Van Hoof, D., K.A. D'Amour, and M.S. German, Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res, 2009. 3(2-3): p. 73-87.
    6. Heng, B.C., et al., The cryopreservation of human embryonic stem cells. Biotechnol Appl Biochem, 2005. 41: p. 97-104.
    7. Hunt, C.J., Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfusion Medicine and Hemotherapy, 2011. 38(2): p. 107-123.
    8. Mitalipov, S. and D. Wolf, Totipotency, Pluripotency and Nuclear Reprogramming. 2009: p. 185-199.
    9. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
    10. Ma, T., et al., Progress in the reprogramming of somatic cells. Circ Res, 2013. 112(3): p. 562-74.
    11. Hayes, M. and N. Zavazava, Strategies to generate induced pluripotent stem cells. Methods Mol Biol, 2013. 1029: p. 77-92.
    12. Wang, P. and J. Na, Reprogramming to pluripotency and differentiation of cells with synthetic mRNA. Methods Mol Biol, 2013. 969: p. 221-33.
    13. Su, J.B., D.Q. Pei, and B.M. Qin, Roles of small molecules in somatic cell reprogramming. Acta Pharmacol Sin, 2013. 34(6): p. 719-24.
    14. Takahashi, K. and S. Yamanaka, Induced pluripotent stem cells in medicine and biology. Development, 2013. 140(12): p. 2457-61.
    15. Scott, C.W., M.F. Peters, and Y.P. Dragan, Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol Lett, 2013. 219(1): p. 49-58.
    16. Simara, P., J.A. Motl, and D.S. Kaufman, Pluripotent stem cells and gene therapy. Transl Res, 2013. 161(4): p. 284-92.
    17. Wang, W.E., et al., Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease. Clin Sci (Lond), 2013. 125(7): p. 319-27.
    18. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-7638.
    19. Evans, M.J. and M. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 151-156.
    20. Shamblott, M.J., et al., Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A, 1998. 95: p. 13726-13731.
    21. Thomson, J.A., Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 1998. 282(5391): p. 1145-1147.
    22. Vogel, G., Breakthrough of the year: Capturing the promise of youth. Science, 1999. 286: p. 2238-2239.
    23. Vazin, T. and W.J. Freed, Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci, 2010. 28(4): p. 589-603.
    24. Cowan, C.A., et al., Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med, 2004. 350(13): p. 1353-1356.
    25. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000. 18(4): p. 399-404.
    26. Strom, S., et al., Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod, 2007. 22(12): p. 3051-8.
    27. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nat Biotechnol, 2005. 23(6): p. 699-708.
    28. James, D., et al., TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005. 132(6): p. 1273-82.
    29. Amit, M. and J. Itskovitz-Eldor, Derivation and spontaneous differentiation of human embryonic stem cells. J Anat, 2002. 200: p. 225-232.
    30. Henderson, J.K., et al., Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 2002. 20: p. 329-337.
    31. Badcock, G., et al., The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res, 1999. 59: p. 4715-4719.
    32. Draper, J.S., et al., Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat, 2002. 200: p. 249-258.
    33. Sperger, J.M., et al., Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13350-5.
    34. Bhattacharya, B., et al., Gene expression in human embryonic stem cell lines: unique molecular signature. Blood, 2004. 103: p. 2956-2964.
    35. Abeyta, M.J., et al., Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet, 2004. 13(6): p. 601-8.
    36. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001. 19: p. 193-204.
    37. Gutierrez-Aranda, I., et al., Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 2010. 28(9): p. 1568-70.
    38. Murry, C.E. and G. Keller, Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 2008. 132(4): p. 661-80.
    39. Pera, M., et al., Derivation of Xeno-Free and GMP-Grade Human Embryonic Stem Cells – Platforms for Future Clinical Applications. PLoS One, 2012. 7(6): p. e35325.
    40. Amit, M., et al., Human feeder layers for human embryonic stem cells. Biol Reprod, 2003. 68(6): p. 2150-6.
    41. Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6.
    42. Inzunza, J., et al., Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells, 2005. 23(4): p. 544-9.
    43. Tecirlioglu, R.T., et al., Derivation and maintenance of human embryonic stem cell line on human adult skin fibroblast feeder cells in serum replacement medium. In Vitro Cell Dev Biol Anim, 2010. 46(3-4): p. 231-5.
    44. Ilic, D., M. Kapidzic, and O. Genbacev, Isolation of human placental fibroblasts. Curr Protoc Stem Cell Biol, 2008. Chapter 1: p. Unit 1C 6.
    45. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(971-974).
    46. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods, 2010. 7(12): p. 989-994.
    47. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
    48. Rajala, K., et al., Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod, 2007. 22(5): p. 1231-8.
    49. Yao, S., et al., Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A, 2006. 103(18): p. 6907-12.
    50. Lu, J., Defined culture conditions of human embryonic stem cells. Proceedings of the National Academy of Sciences, 2006. 103(15): p. 5688-5693.
    51. Ludwig, T.E., et al., Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol, 2006. 24(2): p. 185-7.
    52. Ichikawa, H., et al., Gene pathway analysis of the mechanism by which the Rho-associated kinase inhibitor Y-27632 inhibits apoptosis in isolated thawed human embryonic stem cells. Cryobiology, 2012. 64(1): p. 12-22.
    53. Martin-Ibanez, R., et al., Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum Reprod, 2008. 23(12): p. 2744-54.
    54. Gauthaman, K., C.Y. Fong, and A. Bongso, Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion. Stem Cell Rev, 2010. 6(1): p. 86-95.
    55. Pakzad, M., et al., Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging. Stem Cell Rev, 2010. 6(1): p. 96-107.
    56. Shi, J. and L. Wei, Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz), 2007. 55(2): p. 61-75.
    57. Xu, Y., et al., Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A, 2010. 107(18): p. 8129-34.
    58. Godfrey, K.J., et al., Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med, 2012. 29(1): p. 14-23.
    59. McCall, Michael D., et al., Are stem cells a cure for diabetes? Clinical Science, 2009. 118(2): p. 87-97.
    60. Weir, G.C., C. Cavelti-Weder, and S. Bonner-Weir, Stem cell approaches for diabetes: towards beta cell replacement. Genome Med, 2011. 3(9): p. 61.
    61. Wagner, R.T., et al., Stem cell approaches for the treatment of type 1 diabetes mellitus. Transl Res, 2010. 156(3): p. 169-79.
    62. Soria, B., In-vitro differentiation of pancreatic beta-cells. Differentiation, 2001. 68: p. 205-219.
    63. Mfopou, J.K., et al., Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes, 2010. 59(9): p. 2094-101.
    64. Van Orman, J.R., et al., Induction of cardiomyogenesis in human embryonic stem cells by human embryonic stem cell-derived definitive endoderm. Stem Cells Dev, 2012. 21(6): p. 987-94.
    65. Yoon, B.S., et al., Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 2006. 74(4): p. 149-59.
    66. Schuldiner, M., et al., Induced neuronal differentiation of human embryonic stem cells. Brain Research, 2001. 913: p. 201-205.
    67. Zhang, S.C., et al., In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol, 2001. 19: p. 1129-1133.
    68. D'Amour, K.A., et al., Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol, 2006. 24(11): p. 1392-401.
    69. Zhang, D., et al., Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res, 2009. 19(4): p. 429-38.
    70. Kunisada, Y., et al., Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res, 2012. 8(2): p. 274-84.
    71. Jiang, J., et al., Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells, 2007. 25(8): p. 1940-53.
    72. Cho, Y.M., et al., Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochem Biophys Res Commun, 2008. 366(1): p. 129-34.
    73. Reubinoff, B., et al., Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod, 2001. 16(10): p. 2187-2194.
    74. Valbuena, D., Efficient method for slow cryopreservation of human embryonic stem cells in xeno-free conditions. Reprod Biomed Online, 2008. 17: p. 127-135.
    75. Li, T., et al., Bulk vitrification of human embryonic stem cells. Hum Reprod, 2008. 23(2): p. 358-64.
    76. Richards, M., et al., An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem cells, 2004. 22: p. 779-789.
    77. Lee, S.Y., et al., Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. J Endod, 2010. 36(8): p. 1336-40.
    78. Abedini, S., et al., Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology, 2011. 62(3): p. 181-7.
    79. Lee, S.Y., et al., Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs, 2012. 196(1): p. 23-33.
    80. Lee, S.Y., et al., Determination of cryoprotectant for magnetic cryopreservation of dental pulp tissue. Tissue Eng Part C Methods, 2012. 18(6): p. 397-407.
    81. NIH, Stem cell: scientific progress and future research directions. 2001.
    82. Cheng, E.H., et al., Blastocoel volume is related to successful establishment of human embryonic stem cell lines. Reprod Biomed Online, 2008. 17(3): p. 436-444.
    83. D'Amour, K.A., et al., Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol, 2005. 23(12): p. 1534-41.
    84. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 581-3.
    85. Li, Y., et al., Differentiation of Oligodendrocyte Progenitor Cells from Human Embryonic Stem Cells on Vitronectin-Derived Synthetic Peptide Acrylate Surface. Stem Cells Dev, 2013. 22(10): p. 1497-505.
    86. Jin, S., et al., A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One, 2012. 7(11): p. e50880.
    87. Frandsen, U., et al., Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochem Biophys Res Commun, 2007. 362(3): p. 568-74.
    88. Borowiak, M., et al., Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell, 2009. 4(4): p. 348-58.
    89. Phillips, B.W., et al., Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev, 2007. 16(4): p. 561-78.
    90. Shim, J.H., et al., Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 2007. 50(6): p. 1228-38.
    91. Segev, H., et al., Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells, 2004. 22: p. 265-274.
    92. Li, Y., J.-C. Tan, and L.-S. Li, Comparison of three methods for cryopreservation of human embryonic stem cells. Fertility and Sterility, 2010. 93(3): p. 999-1005.
    93. Fujioka, T., et al., A simple and efficient cryopreservation method for primate embryonic stem cells. Int J Dev Biol, 2004. 48(10): p. 1149-54.
    94. Mollamohammadi, S., et al., A simple and efficient cryopreservation method for feeder-free dissociated human induced pluripotent stem cells and human embryonic stem cells. Hum Reprod, 2009. 24(10): p. 2468-2476.
    95. Watanabe, K., et al., A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol, 2007. 25(6): p. 681-6.
    96. Kaku, M., et al., Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology, 2010. 61(1): p. 73-8.
    97. Kaku, M., et al., Electric and magnetic fields in cryopreservation: A response. Cryobiology, 2012. 64(3): p. 304-305.
    98. Ware, C.B., A.M. Nelson, and C.A. Blau, Controlled-rate freezing of human ES cells. BioTechniques, 2005. 38: p. 879-883.
    99. Katkov, II, et al., Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology, 2006. 53(2): p. 194-205.
    100. Nishigaki, T., et al., Cryopreservation of primate embryonic stem cells with chemically-defined solution without Me2SO. Cryobiology, 2010. 60(2): p. 159-64.
    101. Nishigaki, T., et al., Highly efficient cryopreservation of human induced pluripotent stem cells using a dimethyl sulfoxide-free solution. Int J Dev Biol, 2011. 55(3): p. 305-11.
    102. Ha, S.Y., et al., Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum Reprod, 2005. 20(7): p. 1779-85.
    103. Xu, X., et al., Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnol Prog, 2010. 26(3): p. 781-8.
    104. Cheng, X., et al., Self-Renewing Endodermal Progenitor Lines Generated from Human Pluripotent Stem Cells. Cell Stem Cell, 2012. 10(4): p. 371-384.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE