簡易檢索 / 詳目顯示

研究生: 藍貫哲
Kuan-Che Lan
論文名稱: 離子鍍著製程中奈米晶氮氧化鋯薄膜之合成與性質特徵之影響研究
Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating
指導教授: 喻冀平
Ge-Ping Yu
黃嘉宏
Jia-Hong Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 102
中文關鍵詞: 離子鍍著氮氧化鋯氮氧化鋯厚度氧含量薄膜奈米晶相分離
外文關鍵詞: Ion plating, Zr(N,O), ZrNxOy, Thickness, Oxygen content, Thin film, Nanocrystalline, Phase separation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鋯薄膜在惡劣的環境下仍具有優異的防蝕以及耐磨耗的特性有利於裝飾鍍膜的應用。但是單調的金黃色澤限制了氮化鋯薄膜在裝飾鍍膜領域上的應用。藉由在鍍膜製程中通入氧氣,我們可以得到不只具有良好的耐腐蝕磨耗的特性而且具有多種顏色變化的氮氧化鋯薄膜。本實驗藉由改變通氧量從0到8 sccm以及改變鍍膜時間從14到56分鐘,利用中空陰極電弧放電法於P-type Si(100) 鍍著Zr(N,O)薄膜。本實驗主要目的解答彩色Zr(N,O)薄膜之顏色乃本質色或外質色與否,並探討厚度對於其成份結構性質的影響。薄膜氧含量利用XPS量測,發現隨著氧流量的增加並且隨厚度的增加有少許的減少。ZrO2 和Zr2ON2的存在是利用XRD與XPS結果得到。在0,3,5 sccm的通氧量下的Zr(N,O) 薄膜屬於本質色,但是8 sccm通氧量下的試片則呈現外質色的特徵。硬度隨著膜厚的增加而增加。電阻也隨著膜厚增加而增加,但是在純ZrN薄膜中,含氧量的影響,比厚度更為重要。厚度改變不會造成光學殘留應力有顯著變化。最後,利用modifiedXRD與光學曲率兩種殘留應力量測方法得到氮化鋯薄膜的普松比以及彈性常數。


    Zirconium nitride (ZrN) thin films have good corrosion and wear resistance in the aggressive environment for decorative coating. The narrow range of golden yellow color could limit the application of ZrN films in decorative coatings. By introducing the oxygen flow during coating, we can obtain zirconium oxynitride thin films which have good mechanical properties, chemical inertness, and have various colors from golden yellow to dark blue. Zr(N,O) films were deposited on P-type Si(100) wafer using hollow cathode discharged ion-plating (HCD-IP) by changing O2 flow rate from 0 to 8 sccm and deposition time from 14 to 56 min based on our previous study. The coloration of Zr(N,O) film attributing to intrinsic or extrinsic was studied. Effect of thickness and other composition, structure, and properties of Zr(N,O) thin films were characterized. The oxygen content of the thin film, determined using X-ray photoelectron spectroscopy (XPS), increased with increasing oxygen flow rate, meantime it decreased with incresing thickness. The phase separation of ZrN, Zr2ON2 and ZrO2 was indicated by using X-ray diffraction and XPS analysis. The coloration of specimens prepared at 0, 3, and 5 sccm O2 flow rate was intrinsic but that of 8 sccm samples showed the characteristic of extrinsic color. The film hardness increased with increasing thickness. The resistivity increased with decreasing thickness; however, the effect of oxygen content on resistivity was more significant than film thickness of pure ZrN thin films. No significant change of the residual stress measurement by the optical method with thin thickness was noted. Finally, Poisson’s ratio and elastic constant of ZrN thin film were calculated by combining the results of modified sin2ψ XRD method and optical measurement.

    致謝 i 摘要 iii Abstarct iv Content v Figure Caption vii Table Caption x Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Characteristics of Zr(N,O) 3 2.1.1 ZrN Phase 3 2.1.2 ZrO2 Phase 4 2.1.3 Zirconium Oxynitride Phase 4 2.2 Deposition Method (Hollow Cathode Discharge Ion-Plating, HCD-IP) 7 2.3 Structure Characterizationof the nanocrystalline thin films 8 2.4 Effect of Film Thickness on Characterizations of TMe(N,O) Films 8 2.5 Influences of Oxygen Addition on the Properties of TMe(N,O) Films 9 2.5.1 Coloration 9 2.5.2 Hardness 11 2.5.3 Residual stress 11 2.5.4 Resistivity 12 Chapter 3 Experimental Details 13 3.1 Specimen Preparation and Deposition Process for Zr(N,O) thin films 14 3.2 Characterization Methods 15 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 15 3.2.2 Rutherford Backscattering Spectroscopy (RBS) 16 3.2.3 XRD and GIXRD 16 3.2.4 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 17 3.3 Properties Measurement 18 3.3.1 Electrical Resistivity 18 3.3.2 Hardness 18 3.3.3 Atomic Force Microscopy (AFM) 18 3.3.4 Residual Stress 19 3.3.4.1 Optical Method 19 3.3.4.2 Modified XRD sin2ψ Method 19 3.3.5 Coloration 22 3.3.6 Corrosion Resistance 22 Chapter 4 Results 23 4.1 Composition 23 4.1.1 XPS 23 4.1.2 RBS 26 4.2 Structure 32 4.2.1 XRD and GIXRD 32 4.2.2 SEM 36 4.2.3 AFM 37 4.3 Properties 41 4.3.1 Coloration 41 4.3.2 Packing density 43 4.3.3 Hardness 45 4.3.4 Residual Stress 46 4.3.4.1 Optical Method 46 4.3.4.2 Modified sin2Ψ XRD method 48 4.3.5 Resistivity 50 4.3.6 Corrosion Resistance 52 Chapter 5 Discussion 54 5.1 Determination of Phase and composition Using a Method Employing Combination of XRD and XPS Data 54 5.1.1 The Difficulty of the Phase identification using XRD Data 54 5.1.2 Procedure of phase identification using Both XRD and XPS Data 57 5.1.3 The best choice of peak deconvolution 59 5.1.4 Summary 62 5.2 Microstructure Evolution 64 5.2.1 Cross Section Image 64 5.2.2 Characteriestics of θ-2θ Diffraction Patterns 64 5.2.3 Trend of Hardness with the Oxygen Flow Rate at the Same Deposition Time 65 5.2.4 Other Clues Based on Properties of the Coating Films 66 5.2.5 Summary of Microstructure evolution 67 5.3 Properties 68 5.3.1 Coloration 68 5.3.2 Resistivity 70 5.3.3 Hardness 73 5.3.4 Residual stress (calculation using the new Poisson’s ratio ν and new elastic constant E) 77 5.3.5 Summary 83 5.4 Measured of Elastic Constant and Poisson’s ratio Using Combination of the optical method and the Modified sin2Ψ XRD method 84 5.4.1 Significance of Elastic Constant and Poisson’s ratio 84 5.4.2 Procedures of Calculation of the elastic constant and Poisson’s ratio 84 5.4.3 New Poisson’s ratio ν and new elastic constant E of the A0 and D0 specimens 87 5.4.4 Summary 90 Chapter 6 Conclusions 92 Reference 93 Appendix A 99

    [1] B. Zega, Surf. Coat. Technol., 39/40 (1989) 507.
    [2] C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H. Stori, Vaccum 46 (1995) 1281
    [3] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol. 41 (1990) 191
    [4] L. V. Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol. 53 (1992) 25
    [5] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films 228 (1993) 233
    [6] P.C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53
    [7] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
    [8] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol. 112 (1999) 133
    [9] Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p. 416
    [10] R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195
    [11] C. H. Ho, “Effect of Nitrogen Flow Rate on the Structure and Properties of Nanocrystalline ZrN Thin Film deposited by HCD Ion Plating”, 2003, Master Thesis, National Tsing Hua University, R.O.C.
    [12] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Surface and Coatings Technology 174 –175 (2003) 197–203
    [13] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Pischow, J. de Rijk, Thin Solid Films 447 –448 (2004) 449–454
    [14] E. Alves, A.R. Ramos, N.P. Barradas, F. Vaz, P. Cerqueira, L. Rebouta, U. Kreissig, Surface and Coatings Technology 180 –181 (2004) 372–376
    [15] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469–470 (2004) 11– 17
    [16] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Rivie`re, Surface & Coatings Technology 200 (2006) 2917– 2922
    [17] P. Carvalho, F. Vaz,T, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J.P. Rivie`re, E. Alves, A. Cavaleiro, Surface & Coatings Technology 200 (2005) 748– 752
    [18] P. Carvalho, F. Vaz, L. Re, bouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Rivière, J. F. Pierson, O. Banakh, JOURNAL OF APPLIED PHYSICS 98, 023715 (2005)
    [19] E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J.P. Rivie`re, Thin Solid Films 469–470 (2004) 274–281
    [20] S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, P. Carvalho, F. Vaz, A.C. Fernandes, L. Rebouta, L. Cunha, E. Alves, Ph. Goudeau, J.P. Rivière, Surface & Coatings Technology 200 (2006) 6634–6639
    [21] K. H. Chang, “A Study of Nanocrystalline Zr(N,O) Thin Films Deposited by Ion Plating”, 2005, Master Thesis, National Tsing Hua University, R.O.C.
    [22] JCPDS file 35-0753
    [23] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 149 (2002) 7.
    [24] J. H. Huang, K. W. Lau, G. P. Yu, Surf. Coat. Technol. 191 (2005) 17.
    [25] W.J. Chou, G.P. Yu, J.H. Huang, Thin Solid Films, 405 (2002) 162
    [26] J.H. Huang, C.Y. Hsu, S.-S. Chen, G.-P. Yu, Mater. Chem. and Phys. 77 (2002) 14
    [27] C.C. Wang, S.A. Akbar, W. Chen, V.D. Patton, J. Mater. Sci. 30 (1995) 1627.
    [28] J. Musil and J. Wolfe, Mater. Sci. Eng., A 163 (1993) 211.
    [29] J.E. Hove, and W.C. Riley (Eds.), Modern Ceramic: Some Principles and Concepts, John Wiley, CA, 1965, p.352
    [30] L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188
    [31] A. J. Perry, Vficlav Valvoda and David Rafaja, Thin Solid Films, 214 (1992) 169-174
    [32] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    [33] A. J. Perry, Thin Solid Films, 193 (1990) 463-471,
    [34] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991) 1463
    [35] A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2 –Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
    [36] Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys., Condens. Mat., 15 (2003) 7707
    [37] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
    [38] A. Hidaka, J. Nakamura, J. Sugimoto, Nucl, Eng. Des., 168 ( 1997) 361.
    [39] K. Maca, H. Hadraba, J. Cihlar, Nucl. Eng. Des., 168 (1997) 361
    [40] A. Emeline, G.V. Kataeva, A. S. Litke, A. V. Rudakova,V. K. Ryabchuk, N. Serpone, Langmuir, 14 (1998) 5011.
    [41] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    [42] X. J. Chen, K. A. Khor, S. H Chan, L. G. Yu, Mater. Sci. Eng. 335 (2002) 246.
    [43] Cheol Seong Hwang, Hyeong Joon Kim, J. Mater. Res. 8 (1993) 6.
    [44] M. G. Krishna, K. Narasimha, S. Mohan, Thin Solid Films, 193-194 (1990) 690.
    [45] W. W. Davison, R. C. Buchanan, Advances in Ceramics, edited by M. F. Yan (American Ceramic Society, Westerville, OH), 1989, Vol. 26, p. 513
    [46] H. Myoren, Y. Nishiyama, H. Fukumoto, H. Sasu, and Y. Osaka, Jpn. J. Appl. Phys., 28(3) (1989) 351.
    [47] S. S. Sim, P-Y. Chu, R. H. Krabill, and D. E. Clark, Ultrastructure Processing of Advanced Ceramics, edited by J. D. Mackenzie (John Wiley & Sons, New York, 1988), p. 995
    [48] M. LERCH, E. FUÈ GLEIN, J. WRBA, Z. Anorg. Allg. Chem. 622 (1996) 367.
    [49] M.Lerch, F.Krumeich, R.Hock, Solid State Ionics 95 (1997) 87-93
    [50] M. Lerch, JOURNAL OF MATERIALS SCIENCE LETTERS 17 (1998) 441-443
    [51] S. J. Clarke, C. W. Michie, M. J. Rosseinsky, Journal of Solid State Chemistry 146, 399-405 (1999)
    [52] R. B. VON DREELE, L. EYRING, A. L. BOWMAN, J. L. YARNELL, Acta. Crystallogr. B31 (1975) 971
    [53] M. R. THORNBER, D. J. M. BEVAN, J. GRAHAM, ibid. B24 (1968) 1183.
    [54] W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B, 80/81 (1993) 445
    [55] N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol., 142-144 (2001) 615.
    [56] Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films, 440 (2003) 66
    [57] R.A. Dugdale, J. Mater. Sci., 1(1966) 160.
    [58] Fouad. Attar, Surface and Coatings Technology 78 (1996) 78-86
    [59] M. Wittling, A. Bendavid, P.J. Martin, M.V. Swain, Thin Solid Film 270 (1995) 283-288
    [60] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surface and Coatings Technology 168 (2003) 43–50
    [61] F.Y. Ouyang, “Effect of Film Thickness and Ti Interlayer Thickness on the Structure and Properties of Nanocrystalline TiN Thin Film Deposited by Unbalanced Magnetron (UBM) Sputtering”, 2003, Master Thesis, National Tsing Hua University, R.O.C.
    [62] Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films, 440 (2003) 66.
    [63] N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci., 185 (2001) 123.
    [64] N. Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol., 142-144 (2001) 615.
    [65] S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Thin Solid Films 415 (2002) 187–194
    [66] Z.-E. Tsai, “Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film”, 2005, Master Thesis, National Tsing Hua University, R.O.C.
    [67] C.-W. Chen, “Effect of Film Thickness on the Structure and Properties of Nano-crystalline Zr(N,O) Thin Films Deposited by Ion Plating”, 2006, Master Thesis, National Tsing Hua University, R.O.C.
    [68] S.-H. Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)”, 2006, Master Thesis, National Tsing Hua University, R.O.C.
    [69] S. M. Aouadi, P. K. Shreeman, Q. Ge, J. Xu, S. R. Mishra, APPLIED PHYSICS LETTERS 87, 041902 (2005)
    [70] S. M. Aouadi, P. Basnyat, Y. Zhang, Q. Ge, P. Filip, APPLIED PHYSICS LETTERS 88, 021902 (2006)
    [71] M. Nose, M. Zhou, T. Nagae, T. Mae, M. Yokota, S. Saji, Surface and Coatings Technology 132 (2000) 163-168
    [72] D. Pilloud, J.F. Pierson, A.P. Marques, A. Cavaleiro, Surface and Coatings Technology 180 –181 (2004) 352–356
    [73] W. J. Chou, C. H. Sun, G.P. Yu, J. H. Huang, Mater. Chem. Phys, 82 (2003) 228
    [74] W. J. Chou, “Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods”, 2003, Ph. D Thesis, National Tsing Hua University, R.O.C.
    [75] http://www.cem.msu.edu/~cem924sg/XPSASFs.html
    [76] P. Scherrer, Gott. Nachr. 2 (1918) 98
    [77] Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233
    [78] G. G. Stoney, Proc. R. Soc. Lond. A82 (1909) 17
    [79] Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan, J. Manuf, Sci. Eng. 126 (2004) 10-17.
    [80] C.-H. Ma, J.-H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73–78, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction
    [81] W. C. Oliver, G. M. Pharr, J. Mater. Res. 7(6) (1992) 1564-1583
    [82] I. Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. Interface Anal., 24 (1996) 448
    [83] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240
    [84] JCPDS file 50-1170
    [85] JCPDS file 83-0944
    [86] Larson AC, Von Dreele RB. GSAS, general structure analysis system. Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, 1986.
    [87] K. Koski, J.Holsa, P. Juliet, Surface and Coatings Technology 120–121 (1999) 303–312
    [88] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Corros. Sci. 43 (2001) 2023
    [89] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol. 140 (2001) 206.
    [90] Katsuhiro Yokota, Kazuhiro Nakamura, Tomohiko Kasuya, Katsuhia Mukai, Masami hnishi, J. Phys. D: Appl. Phys. 37 (2004) 1095.
    [91] I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, J. Vac. Sci. Technol. A.12(5) Sep/Oct (1994) 2846.
    [92] C.-H. Ma, J.-H. Huang, Haydn Chen, Surface & Coatings Technology 200 (2006) 3868– 3875
    [93] I.C. Noyan, J.B. Cohen, Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, New York, 1987.pp119
    [94] J. A. Sue, Surface and Coatings Technology, 54/55 (1992) 154—159
    [95] H. Dolle and V. Hauk, Z. f. Metalkde, 68 728 (1977)
    [96] K. A. Gruss, T. Zheleva, R. F. Davis, T. R. Watkins, Surface and Coatings Technology 107 (1998) 115-124
    [97] Cheng-Shi Chen, Chuan-Pu Liu, Heng-Ghieh Yang, C.-Y. A. Tsao, J. Vac. Sci. Technol. A 22(5), Sep/Oct 2004
    [98] E. Atar, C. Sarioglu, H. Cimenoglu, E.S. Kayali, Surface & Coatings Technology 191 (2005) 188– 194
    [99] Jia-Hong Huang, Hao-Chung Yang, Xing-Jian Guo, Ge-Ping Yu, Surface & Coatings Technology 195 (2005) 204– 213
    [100] K. I. Portnoi, A. A. Mukaseev, V. N. Gribkov and Yu. V. Levinskii, Soviet Powder Metall. Met. Ceram. (Engl. Tram/.), 65 (5) (1968) 406.
    [101] I. N. Frantsevich, E. A. Zhurakovskii and A. B. Lyashchenko, Izv. Akad. Nauk SSSR Neorg. Mater, 3 (1) (1967) 6.
    [102] Xiao-Jia Chen, Viktor V. Struzhkin, Zhigang Wu, Maddury Somayazulu, Jiang Qian, Simon Kung, Axel Nørlund Christensen, Yusheng Zhao, Ronald E. Cohen, Ho-kwang Mao, and Russell J. Hemley, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 102 (9): 3198-3201 MAR 1 2005
    [103] Cevat Sarioglu, Surface and Coatings Technology 2006 (in print)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE