簡易檢索 / 詳目顯示

研究生: 吳映潔
Wu, Ying-Chieh
論文名稱: 螺旋微帶線微波共振式探針之研製與電漿密度量測
Development of Spiral Microstrip-line Microwave Resonant Probe for Measurement of Plasma Density
指導教授: 柳克強
Leou, Keh-Chyang
口試委員: 張家豪
Chang, Chia-Hao
謝政宏
Hsieh, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 電漿監測電漿密度探針共振
外文關鍵詞: Plasma diagnostic, Plasma density, Probe, Resonance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今半導體製程中,電漿製程的穩定性是影響整個製程良率的關鍵之一,其中電漿密度在電漿製程中扮演一個重要的角色。因此即時監測腔體內電漿的情況,反饋腔體內的電漿狀態藉以調整製程參數來達到製程的需求,顯得相當重要。
    電漿放電的密度決定了這些電漿製程中的基本特性。本研究是開發利用微帶線微波共振的方式量測電漿密度的偵測器,並且可以監測電漿製程的過程。在先的研究,已經利用微帶線微波干涉儀量測電漿密度。
    本論文研究是螺旋型微帶線共振式探針(Spiral Probe, SP),設計兩種結構,第一種結構是短路端的微帶傳輸線,共振發生時,該結構的傳輸線段長為共振頻率的半波長。第二種結構是開路端的微帶傳輸線,共振發生時,該結構的傳輸線段長為共振頻率的四分之一個波長。並以模擬結果來決定製作短路端的螺旋微帶線微波共振式探針。螺旋型探針設計安裝於腔壁上,對電漿有較小的擾動。首先,利用三維電磁學模擬軟體(High Frequency Structure Simulator, HFSS),將電漿視為是一個介電質,利用微波頻率和電子碰撞頻率計算出介電值,透過HFSS建立真實的電漿環境及探針結構,計算出共振頻率及電漿密度的關係。模擬初步的結果,可觀察到共振頻率隨電漿密度上升而增加,再來製作實體探針,並以網路分析儀量測實驗時的共振頻率,以往共振式探針利用價格較昂貴的安捷倫網路分析儀,本研究會使用單埠向量網路分析儀成本較低的網路分析儀來與安捷倫做比較。
    此外,在模擬討論中以四種不同結構來改善共振器,第一種裝置介電層的螺旋探針,其為增加介電層,但經過驗證後,此結構的峰值可能是與共振腔共振的值;第二種為U型共振器,減少U型共振器的天線長度,可得較大的反射率,計算電漿密度與共振頻率的關係,在電漿密度5x1010 cm-3時,會計算不到峰值,推測可能的原因為操作頻率低於電漿頻率,建議將U型共振器的長度縮短;第三種串聯電容耦合式螺旋探針為增加天線與螺線圈之間隙,隨著間隙越大,反射率也會增加;第四種細線式螺旋探針為將螺旋微帶線微波共振器的天線變細,實驗上,在網路分析儀量測會有不規則雜訊的產生,推測可能是能量輻射出去,與金屬腔壁不斷反射所造成的結果,以模擬計算得到輻射效率值高達97 %,為了改善能量輻射出去的問題,嘗試減少天線的大小,以剖面為半徑0.1 mm的圓,取代原本高2 mm、寬4 mm的天線,可得再相同長度下,天線的粗細會影響輻射效率,天線越細,輻射出去的量就會越小。


    In the semiconductor manufacturing process, the stability of plasma processing influence greatly to yield rate, while the plasma density is the key parameters for plasma processing. Therefore, monitoring and maintaining the plasma, by adjusting procedure parameter to achieve its needed state, it the important step to the process.
    The density of the plasma discharge governs the basic characteristics of these plasma processes. In this study, microwave based diagnostics are developed for plasma density measurement or even process monitoring. In our previous work, we have demonstrated a microstrip line microwave interferometer for monitoring of plasma density in plasma tools.
    The resonant type probe under development is a spiral probe (SP). We design two structure. One structure is a shorted microstrip transmission line. The first resonance of this structure occurs at the frequency where the transmission line becoming a half wavelength resonant structure. Another structure is an opened microstrip transmission line, which is quarter wavelength resonant structure. The spiral probe is designed for mounting on a chamber wall to minimize perturbation to the plasma discharges. The probe is designed by employing three dimensional electromagnetic numerical simulation analysis (HFSS, ANSYS Corp) where the plasma is treated as a dielectric with dielectric functions determined by plasma density, microwave frequency and collision frequency of electrons. We make the probe by silver. When the probe measure the resonant frequency usually use more expensive network analyzer like Agilent. In this study, measure the resonant frequency by Vector Reflectometer which is lower cost. Then we will compare different network analyzer. Make sure the consistency of experiment result and simulation result.
    Furthermore, the resonators were improved in four different structure in the simulation. The first is to increase the dielectric layer, and the peak may be cavity modes by verification. The second is U-shaped resonator. It can get larger reflection by reducing the length of antenna. It can’t observe the peak at plasma density 5x1010 cm-3. It is presumed that the operating frequency may be lower than the plasma frequency, and recommend that the length of the U-shaped resonator be shortened. The third is to increase the gap between the antenna and the spiral. It can get larger reflection by increasing the gap. The fourth is to narrow the antenna of spiral microstrip-line microwave resonant probe. It will measure the noise signal in the experiment. It may be the power radiate out, and reflect with metal chamber wall. The simulation results show that the radiation efficiency value is 97 %. In order to improve the radiation efficiency, we try to reduce the size of antenna. Use 1 mm radius of the antenna to replace the original antenna. It can be observe that the thickness of the antenna will affect the radiation efficiency at the same length.

    摘要 i Abstract iii 目錄 v 圖目錄 vii 第1章簡介 1 1.1研究背景 1 1.2研究目的 3 第2章文獻回顧 4 2.1微波干涉儀 4 2.2傳輸線式微波干涉儀 6 2.3微帶線式微波干涉儀 8 2.4夾型共振器 11 2.5盤曲型探針 19 第3章研究原理 24 3.1螺旋微帶線微波共振式探針基本原理 24 3.2短路半波長傳輸共振器等效電路 26 3.3電漿鞘層的基本原理 28 3.3.1德拜長度 28 3.3.2電漿鞘層與電漿前鞘層 29 3.4微波共振式探針量測操作方法 33 3.5電漿參數 34 第4章實驗機台設備介紹 39 4.1電漿源及電漿量測實驗機台 39 4.2量測使用的儀器及設備 41 第5章結果與討論 44 5.1模擬螺旋微帶線微波共振式探針 44 5.1.1模擬真實電漿環境下螺旋微帶線微波共振式探針 44 5.1.2螺旋微帶線微波共振式探針SP的模擬結果及場分佈 47 5.1.3螺旋微帶線共振式探針於低密度電漿模擬分析 53 5.2螺旋微帶線共振式探針SP的設計與製作 54 5.3 開路端螺旋微帶線微波共振式探針 57 5.3.1開路端螺旋微帶線微波共振式探針之模擬結構 57 5.3.2開路端螺旋微帶線微波共振式探針之模擬結果 58 5.3.3短路端及開路端SP的模擬結果比較 59 5.4 CMT R54單埠向量網路分析儀與安捷倫E5071B量測結果 61 5.5 螺旋微帶線微波共振式探針實驗量測 63 5.6 改善共振器之結構 66 5.6.1裝置介電層的螺旋探針 66 5.6.2U型共振式探針 70 5.6.3串聯電容耦合式螺旋探針 73 5.6.4細線式的螺旋探針 75 5.6.5細線開路端串聯電容耦合式螺旋探針 78 第6章結論 81 A附錄 83 螺旋微帶線微波共振探針設計結構圖 83 參考文獻 88

    [1]謝政宏, "研製應用於監測電漿製程系統中電漿密度之傳輸線式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2004.
    [2]王瀚廷, "研製應用於監測電漿製程系統中電漿密度之平面式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2005.
    [3]鄭景元, "應用於監測電漿製程系統中電漿密度之傳輸線式微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2006.
    [4]梁耀文, "研製應用於監測電漿密度之微帶線式微波干涉儀," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2007.
    [5]顏才華, "空橋式微帶線微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
    [6]王景弘, "M型微帶線微波干涉儀之研製及應用於電漿密度量測分析探討," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2010.
    [7]高主祐, "微波共振式電漿密度感測器之研製及其量測分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2011.
    [8]C. H. Chang, C. H. Hsieh, H. T. Wang, J. Y. Jeng, K. C. Leou, and C. Lin, "A transmission-line microwave interferometer for plasma electron density measurement," Plasma Sources Science and Technology, vol. 16, p. 67, 2007.
    [9]C. H. Hsieh, Y. W. Liang, J. Y. Jeng, J. S. Chiou, K. C. Leou, and C. Lin, "Development of a ridged microstrip microwave interferometer for plasma electron density measurements," Plasma Sources Science and Technology, vol. 24, p. 035019, 2015.
    [10]H. Kokura, K. Nakamura, I. P. Ghanashev, and H. Sugai, "Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 5262-5266, Sep 1999.
    [11]K. Nakamura, M. Ohata, and H. Sugai, "Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas," Journal of Vacuum Science & Technology A, vol. 21, pp. 325-331, Jan-Feb 2003.
    [12]C. Scharwitz, M. Boeke, S. H. Hong, and J. Winter, "Experimental characterisation of the plasma absorbtion probe," Plasma Processes and Polymers, vol. 4, pp. 605-611, Aug 2007.
    [13]B. Li, H. Li, Z. P. Chen, J. L. Xie, G. Y. Feng, and W. D. Liu, "Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe," Plasma Science & Technology, vol. 12, pp. 513-518, Oct 2010.
    [14]H. Sugai and K. Nakamura, "Novel Plasma Monitoring by Surface Wave Probe."
    [15]C. Scharwitz, M. Boke, and J. Winter, "Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas," Plasma Processes and Polymers, vol. 6, pp. 76-85, Jan 2009.
    [16]B. Li, H. Li, Z. P. Chen, J. L. Xie, and W. D. Liu, "Dual-role plasma absorption probe to study the effects of sheath thickness on the measurement of electron density," Journal of Physics D-Applied Physics, vol. 43, Aug 2010.
    [17]R. L. Stenzel, "MICROWAVE RESONATOR PROBE FOR LOCALIZED DENSITY-MEASUREMENTS IN WEAKLY MAGNETIZED PLASMAS," Review of Scientific Instruments, vol. 47, pp. 603-607, 1976.
    [18]R. B. Piejak, V. A. Godyak, R. Garner, B. M. Alexandrovich, and N. Sternberg, "The hairpin resonator: A plasma density measuring technique revisited," Journal of Applied Physics, vol. 95, pp. 3785-3791, Apr 2004.
    [19]R. B. Piejak, J. Al-Kuzee, and N. S. Braithwaite, "Hairpin resonator probe measurements in RF plasmas," Plasma Sources Science & Technology, vol. 14, pp. 734-743, Nov 2005.
    [20]G. S. Gogna, C. Gaman, S. K. Karkari, and M. M. Turner, "Dielectric covered hairpin probe for its application in reactive plasmas," Applied Physics Letters, vol. 101, Jul 2012.
    [21]G. S. Gogna, S. K. Karkari, and M. M. Turner, "Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma," Physics of Plasmas, vol. 21, Dec 2014.
    [22]邱晉陞 and J. S. Chiou, "高靈敏度微波共振探針研製及其射頻電漿鞘層影響分析," 2015.
    [23]X. Jinzhou, N. Keji, Z. Qi, and S. Hideo, "Simulation of resistive microwave resonator probe for high-pressure plasma diagnostics," Plasma Sources Science and Technology, vol. 18, p. 045009, 2009.
    [24]J.-Z. Xu, J.-J. Shi, J. Zhang, Q. Zhang, K. Nakamura, and H. Sugai, "Advanced high-pressure plasma diagnostics with hairpin resonator probe surrounded by film and sheath," Chinese Physics B, vol. 19, p. 075206, 2010.
    [25]I. Liang, K. Nakamura, and H. Sugai, "Modeling Microwave Resonance of Curling Probe for Density Measurements in Reactive Plasmas," Applied Physics Express, vol. 4, Jun 2011.
    [26]A. Pandey, W. Sakakibara, H. Matsuoka, K. Nakamura, and H. Sugai, "Curling probe measurement of electron density in pulse-modulated plasma," Applied Physics Letters, vol. 104, Jan 2014.
    [27]A. Ali and B. Ralf Peter, "Analytical investigation into the resonance frequencies of a curling probe," Plasma Sources Science and Technology, vol. 25, p. 045014, 2016.
    [28]P. Anil, S. Wataru, M. Hiroyuki, N. Keiji, and S. Hideo, "Time-resolved curling-probe measurements of electron density in high frequency pulsed DC discharges," Japanese Journal of Applied Physics, vol. 55, p. 016101, 2016.
    [29]A. Pandey, "Development of Advanced Curling Probe for Reactive Plasma Measurement " Ph.D., Department of Electrical and Electronic Engineering, Chubu University, Japan, 2016.
    [30]A. Ali and B. Ralf Peter, "Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics," Plasma Sources Science and Technology, vol. 26, p. 015011, 2017.
    [31]D. M. Pozar, Microwave Engineering, 4th Edition, 2012.
    [32]M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Dischargesand Materials Processing,2nd Edition," in Principles of Plasma Dischargesand Materials Processing,2nd Edition, ed, 2005.
    [33]A. V. Phelps, "CROSS-SECTIONS AND SWARM COEFFICIENTS FOR NITROGEN-IONS AND NEUTRALS IN N2 AND ARGON IONS AND NEUTRALS IN AR FOR ENERGIES FROM 0.1 EV TO 10 KEV," Journal of Physical and Chemical Reference Data, vol. 20, pp. 557-573, 1991.
    [34]陳穩智, "電漿吸收探針模擬與實驗分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2012.

    QR CODE