研究生: |
蔡碩承 Tsai, Shuo-Cheng |
---|---|
論文名稱: |
核能級石墨於超高溫氣冷反應器爐心環境下之微結構變化及使用壽命評估 Lifetime Evaluation of Nuclear Grade Graphite in Advanced Very High Temperature Gas-cooled Reactor(VHTR) Core Environment Using HRTEM Microstructural Analysis |
指導教授: |
開執中
Kai, Ji-Jung 陳福榮 Chen, Fu-Rong |
口試委員: |
葉宗洸
開物 黃爾文 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 核能級石墨 、穿透式電子顯微鏡 、超高溫氣冷式反應器 |
外文關鍵詞: | Nuclear Grade Graphite, TEM, VHTR |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用高能量帶電的碳離子(3MeV C2+)在超高真空(<5x10-7torr)高溫條件(>600℃),用以模擬在新世代核反應器-超高溫氣冷反應器(Very High Temperature Gas-Cooled Reactor: VHTR)爐心內之劑量以及高溫環境下,核能級石墨材料其內部受到粒子轟擊後的顯微結構變化。利用場發穿隧式電子顯微鏡(FEG-TEM)所獲得的低倍率影像以及高解析度影像(HRTEM images)分析離子輻照後核能級石墨內部基面(Basal plane){0002}以及{21 ̅1 ̅0}的晶格常數改變量以及其亂度係數(Disorder coefficient)的分析數據,再結合早期單晶熱解石墨相關文獻,導入結構因子以及孔洞增生因子等系數,修正單晶下之模型,進而評估不同種類之多晶核能級石墨於未來超高溫氣冷反應器內部的使用壽命以及體積變化議題。
藉本研究使用之模型可以觀測到,核能級石墨IG-110在600℃時其最大體積變化率約為-6.02%,其所恢復到原始體積(Lifetime)之劑量約為30.5dpa,而相同輻照環境下之核能級石墨ATR-2E則約為25dpa。而在更高溫之環境下,兩者的使用壽命皆大幅下降,在800℃時IG-110之使用壽命為25.5dpa、ATR-2E則僅為18.5dpa,在950℃時IG-110石墨壽命也降為19dpa,而利用線性外插後所得到之IG-110, 1050℃晶格變化量帶入此模型內,估計其壽命為10.5dpa,若以此壽命估計,在爐心內部承受最高劑量之石墨約每五年就必須更換材料,以確保爐心內部的結構安全性,而利用此模型亦可預測石墨材料於未來更高溫輻照條件下的體積變化及使用壽命評估。
除了使用年限之外,本研究也利用晶格變化來計算高溫時石墨內部受到輻照所儲存的能量,在高溫輻照下,根據本研究所建立之model指出,高溫輻照時之儲存能將不再是一個安全顧慮。
In this work, Nuclear grade graphite were irradiated by 3 MeV C2+ ion under high temperatures(>600℃) and ultrahigh vacuum (<5x10-7torr) environment to simulate the same radiation damage level in High Temperature Gas-Cooled Reactor(HTGR) environment. Graphite {0002} and {21 ̅1 ̅0} plane were investigated by FEG-TEM high resolution images. Fast Fourier transform was applied to calculate the average lattice parameters after irradiation. Microstructural evolution analyzed in this study including change of lattice parameters、disorder coefficients were intergraded with structure factor、pore generation factor to develop a model for lifetime and volume change evaluation inside nuclear grade graphite after different irradiation temperatures and fluences.
Our model estimated that IG-110 irradiated at 600℃, its maximum volume change reached -6.02% and its lifetime is about 30.5dpa which is very close to experiment carried by neutron. For ATR-2E graphite, its lifetime reaches 25.5dpa in the same irradiated temperature(600℃). At higher irradiated temperature (800), both the lifetime of two graphite decayed seriously. (lifetime is 25.5dpa for IG-110 and 18.5dpa for ATR-2E). According to calculation, graphite block in the highest irradiation fluence region should be replaced every 5 years to insure the structural integrity under irradiation.
Another part of this study showed calculation results of the energy storage inside graphite at high temperature irradiation. At high temperature irradiation condition(>600℃), stored energy is less than 10cal/g. This value is quite small compared to previous study (500cal/g at 150℃). From our results, energy storage in graphite would no longer be a problem in VHTR environment.
【1】 Kirstin Dow,Thomas E. Downing, 氣候變遷地圖,聯經出版
公司,2012
【2】 United Nations Environment Programme, Observed concentrations of
CO2 cross 400 parts per million threshold at several Global
Atmosphere Watch stations, world meteorological organization, a
specialized agency of the United Nations
【3】 Nuclear Energy Institute, U.S. Electricity Production Costs
1995-2012, In 2012 cents per kilowatt-hour
【4】 核能簡訊,132,財團法人核能資訊中心,2011,23-25
【5】 核能簡訊,132,財團法人核能資訊中心,2011,1-10
【6】 U.S. DOE Nuclear Energy Research Advisory Committee and
the Generation IV International Forum,A technology Roadmap
for Generation IV Nuclear Energy Systems, (page5-6) 2012
【7】 梁啓源,油電價格調整與核能政策
【8】 立法院公報 第100 卷 第57 期 委員會紀錄
【9】 A Technology Roadmap for Generation IV Nuclear Energy Systems
Issued by the U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002, p.48
【10】 David Petti ,An Overview of the NGNP Project and Status of
technology Development
【11】 任漢亞, 三維瀝青基碳碳複合材料應用於超高溫氣冷式反應
器(VHTR)爐心環境之微結構變化, 國立清華大學碩士論文
【12】 R.B. Vilim, E.E. Feldman, W.D. Pointer, T.Y.C. Wei, Generation IV
Nuclear Energy System Initiative Initial VHTR Accident Scenario
Classification: Models and Data
【13】 David L. Moses,Very High-Temperature Reactor (VHTR) Proliferation
Resistance and Physical Protection (PR&PP) , 2010/08
【14】 黃慶東,核能發電本課程訓練教材,B.3-92~94.清華大學原子
科學院編印
【15】 謝佾蒼,核能級石墨應用於模擬高溫氣冷式反應器爐心環境
之微結構變化與累積應變能之研究, 國立清華大學碩士論文
【16】 B.J. Marsden, Reactor Core Design principles AGR and HTR, P.6~9
【17】 HTGR Technology Course for the Nuclear Regulatory
Commission May 24 – 27, 2010 Module 9 Graphite
【18】 E.Fitzer and L.M. Manocha, "Carbon reinforcement and
Carbon/Carbon Composites”,Springer, Berlin, 1998
【19】 P. Billot,D. Barbier,Very high temperature reactor(VHTR) the french
atomic energy commission(CEA) R&D program,2004ERY HIGH
【20】 H. C. Lee, C. K. Jo, H. J. Shim, Y Kim, J. M. Noh, Decay heat analysis
of VHTR cores by Monte Carlo core depletion calculation, Annals of
Nuclear Energy, 37, (2010) 1356–1368
【21】 D. Petti,W. Windes, Fuel and Graphite Needs for VHTR
【22】 D. Petti,“NGNP Technology Development”, FY 2009 Office
of Nuclear Energy University Program Workshop(2008)
【23】 盧銀娟、楊宇、石俠民, “球床模塊式高溫氣冷堆的研究及
發展現狀 ”, p1~7,核電 站 2002年第 11期(2002)
【24】 C. H. Oh, C. Davis, R. Barner, P. Pickard, “Thermal
Hydraulic Analysis of HTGRCoupled With Hydrogen Plant”, ANS
Annual Meeting,2006/07
【25】 Forschungszentrum Juelich ,HTR Technological Developments
&Potential Market Werner von Lensa
【26】 K.Kunitomi, X.Yan, T. Nishihara, N. Sakaba and T. Mouri, Jaea's
VHTR for hydrogen and electricity cogeneration : GTHTR300C
Nuclear Engineering and technology, 39(2007) 9-20
【27】 吳 晟, 明日綠色能源之星──氫能源 吳 晟
【28】 J. Sumita, Graphite and Composite Material Information,
Exchange Meeting of JAEA and NTHU on Generation-IV
VHTR and Related Technologies at JAEA Oarai Japan,2009/11
【29】 S. Shiozawa , Present Status and Plan of Research and Development on
HTTR and Hydrogen Production in JAERI, 3rd IPHE Steeling
Committee Meeting, Paris France, 2005
【30】 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“工程材料
科學"全華科技圖書股份有限公司印行。
【31】 G. Savage , ”Carbon-Carbon composites”, Chapman Hall,1993
【32】 B.T. Kelly , Physics of Graphite, Applied Science, London,
pp.1-361, 1981.
【33】 H.O. Pierson, Handbook of Carbon, Graphite, Diamond and
Fullerenes , Noyes, New Jersey, pp.1-69, 1993.
【34】 賴耿陽,“碳材料化學與工學",復漢出版社
【35】 E .Fitzer, The Future of Carbon-Carbon composites, Carbon,
Vol.25, pp.163-190, 1987.
【36】 F.J.Clauss , Solid Lubricants and Self-Lubricating Solids,
Academic Press, New York, pp.43-74, 1972.
【37】 R. E. Nightingale, Nuclear Graphite, 1962
【38】 G. B. Engle and W. P. Eatherly, A review of high-temperature graphite
irradiation behavior ,Gulf General Atomic Project 271, 1972
【39】 M.S.Dresselhaus, R.Kalish ,Ion implantation in diamond, graphite and
related materials, 1992
【40】 M.A. Fütterer,G. Berg, A. Marmier,Irradiation results of avrfuel pebbles
at increased temperature and burn up in HFR petten,2006
【41】 J. Koike, D. F. Pedraza, Dimensional changes in highly oriented
pyrolytic graphite due to electron – irradiation, 1994
【42】 G. Haag, Properties of ATR-2E Graphite and Property Changes due to
Fast Neutron Irradiation
【43】 Glasstone & Sesonke. Nuclear Reactor Engineering.
Springer,1994
【44】 R.H. Telling, C. P. Ewels, Wigner defects bridge the graphite gap, 2003
【45】 N. C. Gallego, T. D. Burchell, A Review of Stored Energy Release of
Irradiated Graphite Washington, DC, U.S. Nuclear Regulatory
Commission,2011
【46】 IAEA, Characterization, Treatment and Conditioning of
Radioactive Graphite from Decommissioning of Nuclear
Reactors, 2006
【47】 T. Oku, M. Ishihara , Lifetime evaluation of graphite components for
HTGRs,Nuclear Engineering and Design 227 (2004) 209–217
【48】 T. D. Burchell, Physica Scripta. Vol. T64, 17-25, 1996
【49】 Ya.I. Shtrombakh, B.A. Gurovich, P.A. Platonov, V.M. Alekseev,
Radiation damage of graphite and carbon-graphite materials” , Journal
of Nuclear Materials, 225 (1995) 273-301
【50】 黃偉豪,新型核能級石墨於超高溫氣冷式反應器空氣進氣事故之氧
化效應, 國立清華大學碩士論文
【51】 T. Tanabe, Radiation Damage of Graphite - Degradation of
Material, Parameters and Defect Structures, Physica Scripta. Vol.
T64, 7-16, 1996
【52】 J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range
of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985)
【53】 J. W. Goodman, Introduction to Fourier optics, 1992
【54】 J.L. Dillenseger, S. Esneault, Fast FFT-based bioheat transfer equation
Computation, Computers in Biology and Medicine ,40 (2010) 119-123
【55】 吳泰伯、許樹恩, X光繞射原理與材料結構分析, 1993
【56】 物理會刊十二卷一期1990年
【57】 R. Olander, “Fundamental aspects of nuclear reactor fuel elements”,
1976.
【58】 吳聲旺,國立清華大學工程與系統科學研究所碩士論文,2007.
【59】 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
【60】 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
【61】 A. N. Jones and B. J. Marsden, Nuclear Graphite Manufacture,
Microstructure and virgin Properties, Carbonowaste Abbeye St Jacut
2010
【62】 S. Mohanty and S. Majumdar, HTGR Graphite Core Component Stress
Analysis Research Program – Task 1 Technical Letter Report, U.S.
Nuclear Regulatory Commission, Washington, DC, 2011
【63】 P. G. Lucasson, R. M. Walker, Production and recovery of
electron-induced radiation damage in a number of metals, Physical
review, Volume 127 No.2, 485-500, 1962
【64】 David B. Williams, C. Barry Carter, Transmission electron
microscopy, 1996
【65】 D.K.L. Tsang, B.J. Marsden, The development of a stress analysis code
for nuclear graphite components in gas-cooled reactors, Journal of
Nuclear Materials, Volume 350, Issue 3, 1, (2006) 208–220
【66】 T. Tanabe, Radiation damage of graphite - degradation of material
parameters and defect structures, Physica Scripta. Vol. T64, 7-16, 1996
【67】 F.Pedraza, J. Koike, Dimensional changes in grade H-451 nuclear
graphite due to electron irradiation, carbon, Vol. 32, No. 4, (1994)
727-734
【68】 M.V. Arjakov , A.V. Subbotin, S.V. Panyukov , O.V. Ivanov ,
A.S.Pokrovskii , D.V. Kharkov, Irradiation induced dimensional
changes in graphite: The influence of sample size, Journal of
Nuclear Materials 420 (2012) 241–251
【69】 T.D. Burchell, P.J. Pappano, J.P. Strizak , A study of the annealing
behavior of neutron irradiated graphite,Carbon Volume 49, Issue
1, January 2011, Pages 3–10
【70】 George E. Dieter, Mechanical Metallurgy, 1986
【71】 Y. Ma, Simulation of interstitial diffusion in graphite, Physical review B
76, 2007
【72】 M. Ishihara, J. Sumita, T. Shibata, T. Iyoku, T. Oku, Principle design
and data of graphite components,Nuclear Engineering and Design 233
(2004) 251–260
【73】 H. Ugachi, S. Ishiyama, M. Eto, Fracture Behavior of Nuclear
Graphites under Tensile Impact Loading, Journal of the Atomic Energy
Society of Japan, vol.36, No.2, (1994)138-145
【74】 K. Urita,K. Suenaga, T. Sugai, H. Shinohara,S. Iijima, In Situ
Observation of Thermal Relaxation of Interstitial-Vacancy Pair Defects
in a Graphite Gap, physical review letters,94 (2005)
【75】 Karthik , J. Kane, D.P. Butt, W.E. Windes , R. Ubic, In situ transmission
electron microscopy of electron-beam induced damage process in
nuclear grade graphite, Journal of Nuclear Materials 412 (2011) 321–
326
【76】 Burchell T, Carbon Materials for Advanced Technologies, Chpt.
13 (1999) p. 429
【77】 J Rappeneau, J.L Taupin, J Grehier, Energy released at high temperature
by irradiated graphite,Carbon 9 (1966) 115-124
【78】 Todd Allen, generation IV systems and materials, advanced
computational materials science: application to fusion and
generation-IV fission reactors, 2004
【79】 T. Burchell, R. Bratton, W. Windes, NGNP graphite selection and
acquisition strategy materials technology,2007
【80】 J. E. Brocklehurst , B. T. Kelly, the dimensional change of
highly-oriented pyrolytic graphite irradiated with fast neutrons at 430
℃ and 600℃,Carbon. Vol. 31,(1993) 179-183
【81】 P. J. Hacker, G. B Neighbour, B. McEnaney, The coefficient of thermal
expansion of nuclear graphite with increasing thermal oxidation, J.
Phys. D: Appl. Phys. 33 (2000) 991–998
【82】 J. E. Brocklehurst , B. T. Kelly, analysis of the dimensional changes and
structural changes in polycrystalline graphite under fast neutron
irradiation, Carbon. Vol. 3l.No. 1.(1993)155-178
【83】 S. Ishiyama, T.D. Burchell, J.P. Strizak, M. Eto, The effect of high
fluence neutron irradiation on the properties of a fine-grained isotropic
nuclear graphite, Journal of Nuclear Materials 230 (1996) 1-7aterial