鐵磁性記憶合金的變磁性效應為施加磁場時,合金的相變化溫度隨之改變,可導致磁場誘發逆麻田散相變化。本研究在Ni50Mn36In14中以Ni置換Mn或以Au、Fe、Co取代Ni製作三元及四元合金塊材,探討NiMnInX特性包括:相變化溫度、微結構、變磁性效應、磁致伸縮。
將各種合金做1173K 24小時熱處理並水淬後,所得到的合金母相晶格皆為L21,麻田散相為10M或14M。
合金中以Ni置換Mn將產生Ni3In析出相。以Au取代Ni合金母相晶格常數上升。以Fe取代Ni將產生-Fe析出。
以Au、Fe取代Ni使相變化溫度及熱焓值下降;以Co取代Ni使相變化溫度大幅上升,且熱焓值亦上升,由變溫金相觀測得知熱焓值越高,麻田散相變化驅動力越大。
以Fe取代Ni使居禮溫度上升,並且母相與麻田散相磁化量差異變大,有明顯之變磁性效應。以Co取代Ni,母相與麻田散相磁化量差異亦變大,有變磁性效應。磁場下相變化溫度改變量之實驗值與計算值趨勢相符。其中Ingot #5試片在50kOe磁場下相變化溫度改變量高達35K。
從應變規量測證實Ingot #2、#3、#7與#8均有變磁性效應。磁致伸縮雖證實各合金本身磁致伸縮值不高,但以Fe取代Ni使合金磁致伸縮值上升,並且居禮溫度隨Fe比例增加而上升。
[1] V. Kokorin and M. Wuttig,“Magnetostriction in ferromagnetic shape memory alloys,” Journal of magnetism and magnetic materials (2001), vol.234, pp. 25-30.
[2] T. Kakeshita, K. Shimizu, S. Funada, and M. Date,“Magnetic Field-Induced Martensitic Transformations in Disordered and Ordered Fe--Pt Alloys,” Trans. Jpn. Inst. Met. (1984), vol.25, pp. 837-844.
[3] K. Ullakko, J. Huang, C. Kantner, R. O’handley, and V. Kokorin,“Large magnetic‐field‐induced strains in Ni2MnGa single crystals,” Applied Physics Letters (1996), vol.69, pp. 1966-1968.
[4] D. Jiles and C. Lo,“The role of new materials in the development of magnetic sensors and actuators,” Sensors and Actuators A: Physical (2003), vol.106, pp. 3-7.
[5] A. Vasil’ev, A. Bozhko, V. Khovailo, I. Dikshtein, V. Shavrov, V. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, and J. Tani,“Structural and magnetic phase transitions in shape-memory alloys Ni 2+ x Mn 1-x Ga,” Physical Review B (1999), vol.59, pp. 1113.
[6] X. Jin, M. Marioni, D. Bono, S. Allen, R. O’handley, and T. Hsu,“Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration,” Journal of Applied Physics (2002), vol.91, pp. 8222-8224.
[7] R.D. James and M. Wuttig,“Magnetostriction of martensite,” Philosophical Magazine A (1998), vol.77, pp. 1273-1299.
[8] R.C. Ohandley,“Model for strain and magnetization in magnetic shape-memory alloys,” Journal of Applied Physics (1998), vol.83, pp. 3263-3270.
[9] S.J. Murray, M. Marioni, S. Allen, R. O’handley, and T. Lograsso,“6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Applied Physics Letters (2000), vol.77, pp. 886.
[10] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa,“Magnetic and martensitic transformations of NiMnX (X= In, Sn, Sb) ferromagnetic shape memory alloys,” Applied Physics Letters (2004), vol.85, pp. 4358-4360.
[11] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, and T. Kanomata,“Magnetic-field-induced shape recovery by reverse phase transformation,” Nature (2006), vol.439, pp.957-960.
[12] H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, and H.J. Maier,“Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output,” Advanced Functional Materials (2009), vol.19, pp. 983-998.
[13] L. Delaey, R. Krishnan, H. Tas, and H. Warlimont,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 1 Structural and microstructural changes associated with the transformations,” Journal of Materials Science (1974), vol.9, pp. 1521-1535.
[14] R. Krishnan, L. Delaey, H. Tas, and H. Warlimont,“Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 2 Macroscopic Mechanical-Behavior,” Journal of Materials Science (1974), vol.9, pp. 1536-1544.
[15] H. Warlimont, L. Delaey, R. Krishnan, and H. Tas,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 3 Thermodynamics and Kinetics,” Journal of Materials Science (1974), vol.9, pp. 1545-1555.
[16] T. Tadaki, K. Otsuka, and K. Shimizu,“Shape memory alloys,” Annual Review of Materials Science (1988), vol.18, pp. 25-45.
[17] 賴耿陽,“形狀記憶合金,” 復漢出版社, Vol. 1, pp. 1-44, 1999.
[18] D. Dumme and C. Wayman,“Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2. Crystallography and General Features,” Metallurgical Transactions (1973), vol.4, pp. 147-152.
[19] T. Schroeder and C. Wayman,“The two-way shape memory effect and other training phenomena in Cu- Zn single-crystals,” Scripta Metallurgica (1977), vol.11, pp. 225-230.
[20] R. Grössinger, H. Sassik, D. Holzer, and N. Pillmayr,“Accurate measurement of the magnetostriction of soft magnetic material,” Journal (2000), pp. 35-47.
[21] B. Cullity,“Magnetostriction and the Effect of Stress,” Introduction to Magnetic Materials (1972), vol.8, pp. 248-286.
[22] J. Cui, T. Shield, and R. James,“Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape-memory alloy,” Acta Materialia (2004), vol.52, pp. 35-47.
[23] K. Ullakko,“Magnetically controlled shape memory alloys: a new class of actuator materials,” Journal of materials Engineering and Performance (1996), vol.5, pp. 405-409.
[24] S. Jeong, K. Inoue, S. Inoue, K. Koterazawa, M. Taya, and K. Inoue,“Effect of magnetic field on martensite transformation in a polycrystalline Ni2MnGa,” Materials Science and Engineering: A (2003), vol.359, pp. 253-260.
[25] J. Monroe, I. Karaman, B. Basaran, W. Ito, R. Umetsu, R. Kainuma, K. Koyama, and Y. Chumlyakov,“Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys,” Acta Materialia (2012), vol.60, pp. 6883-6891.
[26] T. Fukuda and T. Kakeshita,“Martensitic transformation in Pd doped FeRh exhibiting a metamagnetic transition,” Journal of Alloys and Compounds (2013), vol.563, pp. 192-196.
[27] S.J. Murray, M. Marioni, S. Allen, R. O’handley, and T.A. Lograsso,“6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Applied Physics Letters (2000), vol.77, pp. 886-888.
[28] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, and B. Ouladdiaf,“Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In,” Physical Review B (2007), vol.75, pp. 104414.
[29] A. Sozinov, A. Likhachev, N. Lanska, and K. Ullakko,“Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Applied Physics Letters (2002), vol.80, pp. 1746-1748.
[30] X. Moya, L. Mañosa, A. Planes, T. Krenke, M. Acet, and E.F. Wassermann,“Martensitic transition and magnetic properties in Ni–Mn–X alloys,” Materials Science and Engineering: A (2006), vol.438, pp. 911-915.
[31] T. Krenke, X. Moya, S. Aksoy, M. Acet, P. Entel, L. Mañosa, A. Planes, Y. Elerman, A. Yücel, and E. Wassermann,“Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys,” Journal of Magnetism and Magnetic Materials (2007), vol.310, pp. 2788-2789.
[32] T. Miyamoto, W. Ito, R. Umetsu, R. Kainuma, T. Kanomata, and K. Ishida,“Phase stability and magnetic properties of Ni50Mn(50−x)Inx Heusler-type alloys,” Scripta Materialia (2010), vol.62, pp. 151-154.
[33] M. Acet, E. Duman, E.F. Wassermann, and A. Planes,“Coexisting ferro-and antiferromagnetism in Ni2MnAl Heusler alloys,” Journal of applied physics (2002), vol.92, pp. 3867-3871.
[34] W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, and K. Ishida,“Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys,” Metallurgical and Materials Transactions A (2007), vol.38, pp. 759-766.
[35] L. Ma, H. Zhang, S. Yu, Z. Zhu, J. Chen, G. Wu, H. Liu, J. Qu, and Y. Li,“Magnetic-field-induced martensitic transformation in MnNiGa: Co alloys,”Applied Physics Letters (2008), vol.92, pp. 032509-032509-3.
[36] Z. Wu, Z. Liu, H. Yang, Y. Liu, and G. Wu,“Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40-xIn10Cox polycrystalline alloys,” Intermetallics (2011), vol.19, pp. 1839.
[37] R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, and O. Kitakami,“Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy,” Applied physics letters (2006), vol.88, pp. 192513.
[38] W. Ito, X. Xu, R. Umetsu, T. Kanomata, K. Ishida, and R. Kainuma,“Concentration dependence of magnetic moment in Ni(50-x)CoxMn(50-y)Zy (Z= In, Sn) Heusler alloys,” Applied Physics Letters (2010), vol.97, pp. 242512-242512-3.
[39] R. Kainuma, W. Ito, R. Umetsu, K. Oikawa, and K. Ishida,“Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys,” Applied Physics Letters (2008), vol.93, pp. 091906-091906-3.
[40] S. Yu, L. Ma, G. Liu, Z. Liu, J. Chen, Z. Cao, G. Wu, B. Zhang, and X. Zhang,“Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys,” Applied physics letters (2007), vol.90, pp. 242501-242501-3.
[41] K. Fukushima, K. Sano, T. Kanomata, H. Nishihara, Y. Furutani, T. Shishido, W. Ito, R. Umetsu, R. Kainuma, and K. Oikawa,“Phase diagram of Fe-substituted Ni–Mn–Sn shape memory alloys,” Scripta Materialia (2009), vol.61, pp. 813-816.
[42] R. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, K. Oikawa, and K. Ishida,“Mössbauer study on martensite phase in Ni50Mn36.5(57)Fe0.5Sn13 metamagnetic shape memory alloy,” Applied Physics Letters (2008), vol.93, pp. 042509-042509-3.
[43] S. Yan, J. Pu, B. Chi, and J. Li,“Effect of Co on the martensitic transformation, crystal structure and magnetization of Ni52. 5Mn23. 5Ga24 based ferromagnetic shape memory alloys,” Chinese Science Bulletin (2011), vol.56, pp. 796-802.
[44] R. Sahoo, A.K. Nayak, K. Suresh, and A. Nigam,“Effect of Fe substitution on the magnetic, transport, thermal and magnetocaloric properties in Ni50Mn38− xFexSb12 Heusler alloys,” Journal of Applied Physics (2011), vol.109, pp. 123904.
[45] L. Feng, W. Zhang, E. Liu, W. Wang, and G. Wu,“Martensitic Transformation and Magnetic Properties of NiMnAl: Fe, Co Ferromagnetic Shape Memory Alloys,” Functional Materials Letters (2013), vol.6.
[46] V. Sharma, M. Chattopadhyay, A. Khandelwal, and S. Roy,“Martensitic transition near room temperature and the temperature-and magnetic-field-induced multifunctional properties of Ni49Cu1Mn34In16 alloy,” Physical Review B (2010), vol.82, pp. 172411.
[47] M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, and K. Kobayashi,“Role of Electronic Structure in the Martensitic Phase Transition of Ni2Mn1+ xSn1-x Studied by Hard-X-Ray Photoelectron Spectroscopy and Ab Initio Calculation,” Physical review letters (2010), vol.104, pp. 176401.
[48] Z. Liu, G. Li, Z. Wu, X. Ma, Y. Liu, and G. Wu,“Tailoring martensitic transformation and martensite structure of NiMnIn alloy by Ga doping In,” Journal of Alloys and Compounds (2012), vol.535, pp. 120-123.
[49] M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. Allen, and R. O’Handley,“Crystal structure and transformation behavior of Ni–Mn–Ga martensites,” Scripta materialia (2006), vol.54, pp. 1797-1801.
[50] A. Sozinov, A.A. Likhachev, and K. Ullakko. Magnetic and magnetomechanical properties of Ni-Mn-Ga alloys with easy axis and easy plane of magnetization. in SPIE's 8th Annual International Symposium on Smart Structures and Materials. 2001. International Society for Optics and Photonics.
[51] C. Jiang, G. Feng, S. Gong, and H. Xu,“Effect of Ni excess on phase transformation temperatures of NiMnGa alloys,” Materials Science and Engineering: A (2003), vol.342, pp. 231-235.
[52] Z. Han, D. Wang, C. Zhang, H. Xuan, J. Zhang, B. Gu, and Y. Du,“Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni–Mn–Sn alloys,” Materials Science and Engineering: B (2009), vol.157, pp. 40-43.
[53] W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, and T. Kanomata,“Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy,” Applied Physics Letters (2008), vol.92, pp. 021908-021908-3.
[54] F. Hu, J. Wang, J. Shen, B. Gao, J. Sun, and B. Shen,“Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni 51 Mn 49-x In x,” Journal of Applied Physics (2009), vol.105, pp. 07A940-07A940-3.
[55] J.-h. Kim, F. Inaba, T. Fukuda, and T. Kakeshita,“Effect of magnetic field on martensitic transformation temperature in Ni–Mn–Ga ferromagnetic shape memory alloys,” Acta materialia (2006), vol.54, pp. 493-499.
[56] Y.-C. Lin and H.-T. Lee,“Magnetostriction and magnetic structure in annealed recrystallization of strain-forged ferromagnetic shape memory Fe–Pd–Rh alloys,” Journal of Applied Physics (2010), vol.107, pp. 09D312-09D312-3.
[57] K. Ullakko, J. Huang, V. Kokorin, and R. O'handley,“Magnetically controlled shape memory effect in Ni2MnGa intermetallics,” Scripta Materialia (1997), vol.36, pp. 1133-1138.
[58] L. Manosa, X. Moya, A. Planes, T. Krenke, M. Acet, and E. Wassermann,“Ni–Mn-based magnetic shape memory alloys: magnetic properties and martensitic transition,” Materials Science and Engineering: A (2008), vol.481, pp. 49-56.
[59] http://www.mse.nthu.edu.tw/about/property.php?Sn=30.
[60] http://rdweb.adm.nctu.edu.tw/page.php?serial=430.
[61] http://www.techmaxasia.com/articles/detail/1196063383 (TechMax Technical Co., Ltd., Nov. 2003).
[62] 施智超,“RT2材料的磁伸縮與磁性研究,” 國立清華大學博士論文 (2002), vol.2, pp. 7-29.
[63] J.A. West and M.J. Aziz, Kinetic Disordering of Intermetallic Compounds Through First-and Second-Order Transitions by Rapid Solidification, in Ordering and Disordering in Alloys. 1992, Springer. p. 23-30.
[64] R. Wang, J. Yan, H. Xiao, L. Xu, V. Marchenkov, L. Xu, and C. Yang,“Effect of electron density on the martensitic transition in Ni–Mn–Sn alloys,” Journal of Alloys and Compounds (2011), vol.509, pp. 6834-6837.
[65] Q. Tao, Z. Han, J. Wang, B. Qian, P. Zhang, X. Jiang, D. Wang, and Y. Du,“Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys,” AIP Advances (2012), vol.2, pp. 042181.
[66] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes,“Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys,” Physical Review B (2006), vol.73, pp. 174413.