簡易檢索 / 詳目顯示

研究生: 劉俊呈
論文名稱: NiMnInX變磁形狀記憶合金之研究
指導教授: 胡塵滌
口試委員: 胡塵滌
楊聰仁
吳錫侃
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 形狀記憶合金變磁性效應相變化溫度微結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵磁性記憶合金的變磁性效應為施加磁場時,合金的相變化溫度隨之改變,可導致磁場誘發逆麻田散相變化。本研究在Ni50Mn36In14中以Ni置換Mn或以Au、Fe、Co取代Ni製作三元及四元合金塊材,探討NiMnInX特性包括:相變化溫度、微結構、變磁性效應、磁致伸縮。
    將各種合金做1173K 24小時熱處理並水淬後,所得到的合金母相晶格皆為L21,麻田散相為10M或14M。
    合金中以Ni置換Mn將產生Ni3In析出相。以Au取代Ni合金母相晶格常數上升。以Fe取代Ni將產生-Fe析出。
    以Au、Fe取代Ni使相變化溫度及熱焓值下降;以Co取代Ni使相變化溫度大幅上升,且熱焓值亦上升,由變溫金相觀測得知熱焓值越高,麻田散相變化驅動力越大。
    以Fe取代Ni使居禮溫度上升,並且母相與麻田散相磁化量差異變大,有明顯之變磁性效應。以Co取代Ni,母相與麻田散相磁化量差異亦變大,有變磁性效應。磁場下相變化溫度改變量之實驗值與計算值趨勢相符。其中Ingot #5試片在50kOe磁場下相變化溫度改變量高達35K。
    從應變規量測證實Ingot #2、#3、#7與#8均有變磁性效應。磁致伸縮雖證實各合金本身磁致伸縮值不高,但以Fe取代Ni使合金磁致伸縮值上升,並且居禮溫度隨Fe比例增加而上升。


    目錄 第一章 緒論.................................................................................................................. 1 1-1 前言 ................................................................................................................ 1 1-2 研究目的 ........................................................................................................ 2 第二章 文獻回顧.......................................................................................................... 3 2-1 鐵磁性形狀記憶合金 .................................................................................... 3 2-2 傳統形狀記憶效應 ........................................................................................ 3 2-3 磁伸縮[20, 21] .................................................................................................... 5 2-4 鐵磁性形狀記憶效應 .................................................................................... 6 2-5 變磁性形狀記憶合金 .................................................................................... 8 2-6 變磁性形狀記憶效應 .................................................................................... 9 2-7 變磁性形狀記憶合金應用 .......................................................................... 10 2-8 NiMnX變磁性形狀記憶合金文獻回顧 ...................................................... 11 2-9 NiMnX合金添加第四元素文獻回顧 .......................................................... 12 2-9-1 添加Co ............................................................................................. 13 2-9-2 添加Fe .............................................................................................. 13 2-9-3 添加Cu ............................................................................................. 14 2-9-4 添加Ga ............................................................................................. 15 2-9-5 添加Ge ............................................................................................. 15 2-10 相變化溫度改變量實驗值與計算值文獻回顧 ........................................ 16 2-11 變磁性效應文獻回顧 ................................................................................ 16 第三章 實驗步驟及方法............................................................................................ 27 3-1 試片製備 ...................................................................................................... 27 3-2 合金鑄錠熔煉 .............................................................................................. 28 3-2-1 真空均質化熱處理(Homogenized Heat Treatment in vacuum) ...... 29 3-2-2 真空退火處理(Annealing in vacuum) .............................................. 29 3-3 成份分析 ...................................................................................................... 29 3-4 熱示差掃描卡量計量測(Differential Scanning Calorimetry) ..................... 29 3-5 結構分析及觀察 .......................................................................................... 30 3-5-1 室溫X-ray繞射分析........................................................................ 30 3-5-2 光學顯微鏡(Optical Microscope , OM)顯微結構觀察 ................... 31 3-6 磁性質量測 .................................................................................................. 31 3-7 磁伸縮量測 .................................................................................................. 32 3-8 溫度誘發應變量測 (Strain Gauge Method) ............................................... 34 3-9 儀器與量測原理 .......................................................................................... 34 3-9-1 X光繞射儀 (X-Ray Diffractometer) ................................................ 34 3-9-2 熱示差掃描卡量計 (Differential Scanning Calorimetry)[61] ........... 35 3-9-3 超導量子干涉儀(Superconducting Quantum Interference Devices, SQUID) ........................................................................................................ 35 3-9-4 應變規(Strain Gauge) ....................................................................... 35 第四章 結果與討論.................................................................................................... 37 4-1 試片代號介紹 .............................................................................................. 37 4-2 試片基本性質研究 ...................................................................................... 37 4-2-1 ICP-MS (Inductively Coupled Plasma Mass Spectrometry)成分分析...................................................................................................................... 37 4-2-2 室溫 X-Ray 繞射分析 .................................................................... 38 4-2-3 晶格常數討論 ................................................................................... 43 4-2-4 光學顯微鏡室溫金相觀察 ............................................................... 44 4-2-5 光學顯微鏡變溫金相觀察 ............................................................... 47 4-2-6 DSC熱分析 ....................................................................................... 54 4-2-7 無磁場相變化溫度探討 ................................................................... 61 4-3 磁性質研究 .................................................................................................. 63 4-3-1 磁場下溫度誘發應變 (Strain Gauge Method) ................................ 63 4-3-2 磁通量研究 (SQUID Method)......................................................... 68 4-3-3 磁化量對溫度循環研究 (SQUID Method)..................................... 71 4-3-4 磁致伸縮研究 ................................................................................... 79 第五章 結論................................................................................................................ 87 第六章 參考文獻........................................................................................................ 89 圖目錄 圖 2-1 形狀記憶合金之形狀記憶效應示意圖 .................................................... 18 圖 2-2 CuAlNi合金熱彈性型麻田散體經冷卻、加熱所致的成長、收縮之光學顯微鏡照片[17] ......................................................................................................... 18 圖 2-3單向&雙向形狀記憶效應示意圖 .............................................................. 19 圖 2-4 磁致伸縮現象之示意圖[21] ....................................................................... 19 圖 2-5 磁伸縮與磁化機制示意圖[21] ................................................................... 20 圖 2-6 磁伸縮量測示意圖[56] ............................................................................... 20 圖 2-7 鐵磁性形狀記憶效應示意圖[57] ............................................................... 20 圖 2-8 (a)磁伸縮與(b)鐵磁性形狀記憶效應的比較[22] ....................................... 21 圖 2-9曲線270 K與290 K呈現變磁性轉換行為[11] ......................................... 21 圖 2-10 傳統形狀記憶效應與變磁性形狀記憶效應示意圖 .............................. 22 圖 2-11 NiMnX合金施加磁場對相變化溫度的影響[58] ..................................... 22 圖 2-12 NiMnX((a)X=Sn, (b)X=In)合金之居禮溫度、麻田散相變化溫度與e/a ratio之關係示意圖[30] ............................................................................................ 23 圖 2-13 Ni-Mn基修士勒合金相變化溫度與e/a ratio關係示意圖[31] ............... 23 圖 2-14 L21結構示意圖[34] .................................................................................... 24 圖 2-15 NiMnIn與NiCoMnIn合金居禮溫度與相變化溫度示意圖[34] ............. 24 圖 2-16 文獻相變化溫度改變整理([a]Ni50Mn25Ga25[55];[b]Ni50.3Mn33.8In15.9[28];[c]Ni45Co5Mn36.6In13.4[11];[d]Ni45Co5Mn36.7In13.3[53];[e]Ni51Mn33In16[54];[f]Ni41Co9Mn39Sb11[40];[g]Ni43Co7Mn39Sn11[37]) ................................................... 26 圖 2-17 圖 2-16各合金成分相圖(Ni41Co9Mn39Sb11與Ni43Co7Mn39Sn11重疊)26 圖 3-1實驗流程簡介 ............................................................................................. 27 圖 3-2真空電弧熔煉系統裝置示意圖 ................................................................. 28 圖 3-3 DSC200F3熱式差掃描卡量計 .................................................................. 30 圖 3-4 Shimadzu XRD-6000繞射儀[59]................................................................. 31 圖 3-5超導量子干涉儀(Superconducting Quantum Interference Device Magnetomer, SQUID)[60] ......................................................................................... 32 圖 3-6磁伸縮量測電路裝置示意圖 ..................................................................... 33 圖 3-7磁致伸縮量測載具 ..................................................................................... 33 圖 3-8溫度誘發應變量測示意圖 ......................................................................... 34 圖 3-9 應變規主要構造圖 .................................................................................... 36 圖 3-10 金屬導線受拉力後彈性應變圖[62] ......................................................... 36 圖 4-1 Ingot #1室溫X-ray繞射圖譜 ................................................................... 39 圖 4-2 Ingot #2室溫X-ray繞射圖譜 ................................................................... 40 圖 4-3 Ingot #3室溫X-ray繞射圖譜 ................................................................... 40 圖 4-4 Ingot #4室溫X-ray繞射圖譜 ................................................................... 41 圖 4-5 Ingot #5室溫X-ray繞射圖譜 ................................................................... 41 圖 4-6 Ingot #6室溫X-ray繞射圖譜 ................................................................... 42 圖 4-7 Ingot #7室溫X-ray繞射圖譜 ................................................................... 42 圖 4-8 Ingot #8室溫X-ray繞射圖譜 ................................................................... 43 圖 4-9 Ingot #1室溫金相(a:放大倍率200;b:放大倍率500) ...................... 45 圖 4-10 Ingot #2室溫金相(a:放大倍率100;b:放大倍率200) .................... 45 圖 4-11 Ingot #3室溫金相(a:放大倍率100;b:放大倍率200) .................... 45 圖 4-12 Ingot #4室溫金相(a:放大倍率100;b:放大倍率200) .................... 46 圖 4-13 Ingot #5室溫金相(a:放大倍率200;b:放大倍率500) .................... 46 圖 4-14 Ingot #6室溫金相(a:放大倍率200;b:放大倍率500) .................... 46 圖 4-15 Ingot #7室溫金相(a:放大倍率100;b:放大倍率200) .................... 47 圖 4-16 Ingot #8室溫金相(a:放大倍率100;b:放大倍率200) .................... 47 圖 4-17 光學顯微鏡下Ingot #1試片升降溫觀察(放大倍率:200) .................. 49 圖 4-18 光學顯微鏡下Ingot #2試片升降溫觀察(放大倍率:100) .................. 50 圖 4-19 光學顯微鏡下Ingot #3試片升降溫觀察(放大倍率:100) .................. 51 圖 4-20 光學顯微鏡下Ingot #7試片升降溫觀察(放大倍率:200) .................. 52 圖 4-21 光學顯微鏡下Ingot #8試片升降溫觀察(放大倍率:200) .................. 53 圖 4-22 Ingot #1 DSC熱分析圖............................................................................ 55 圖 4-23 Ingot #2 DSC熱分析圖............................................................................ 56 圖 4-24 Ingot #3 DSC熱分析圖............................................................................ 56 圖 4-25 Ingot #4 DSC熱分析圖............................................................................ 57 圖 4-26 Ingot #5 DSC熱分析圖............................................................................ 57 圖 4-27 Ingot #6 DSC熱分析圖............................................................................ 58 圖 4-28 Ingot #7 DSC熱分析圖............................................................................ 58 圖 4-29 Ingot #8 DSC熱分析圖............................................................................ 59 圖 4-30 相變化起始溫度(Ms)對應合金成分3D投影圖 .................................... 59 圖 4-31 相變化溫度與價電子體積密度n(nm-3)關係圖 ..................................... 62 圖 4-32 Ingot #2 應變對應溫度關係圖 ............................................................... 64 圖 4-33 Ingot #3 應變對應溫度關係圖 ............................................................... 64 圖 4-34 Ingot #7 應變對應溫度關係圖 ............................................................... 65 圖 4-35 Ingot #8 應變對應溫度關係圖 ............................................................... 65 圖 4-36 Ingot #2 0.5kOe、2kOe、4kOe、10kOe之磁化量對溫度曲線 ............ 66 圖 4-37 Ingot #3 0.5kOe、2kOe、4kOe、10kOe之磁化量對溫度曲線 ............ 66 圖 4-38 Ingot #8 0.5kOe、2kOe、4kOe、10kOe之磁化量對溫度曲線 ............ 67 圖 4-39 應變規量測之相變化溫度改變量實驗值與計算值比較 (a:Ingot #2,b:Ingot #3,c:Ingot #7,d:Ingot #8) ..................................... 67 圖 4-40 Ingot #1 275K磁通量對磁場變化曲線圖(As=276.6K) .......................... 69 圖 4-41 Ingot #2 295K磁通量對磁場變化曲線圖(As=295.1K) .......................... 69 圖 4-42 Ingot #3 285K磁通量對磁場變化曲線圖(As=287.9K) .......................... 70 圖 4-43 Ingot #5 200K磁通量對磁場變化曲線圖(As=197.7K) .......................... 70 圖 4-44 Ingot #8 340K磁通量對磁場變化曲線圖(As=340.1K) .......................... 71 圖 4-45 Ingot #1 0.5kOe、10kOe、50kOe之磁化量對溫度曲線 ...................... 74 圖 4-46 Ingot #2 0.5kOe、10kOe、50kOe之磁化量對溫度曲線 ...................... 74 圖 4-47 Ingot #3 0.5kOe、10kOe、50kOe之磁化量對溫度曲線 ...................... 75 圖 4-48 Ingot #5 0.5kOe、10kOe、50kOe之磁化量對溫度曲線 ...................... 75 圖 4-49 Ingot #6 0.5kOe、10kOe之磁化量對溫度曲線 ..................................... 76 圖 4-50 Ingot #7 0.5kOe、50kOe之磁化量對溫度曲線 ..................................... 76 圖 4-51 Ingot #8 0.5kOe、10kOe、50kOe之磁化量對溫度曲線 (小圖為高溫區域放大圖) ...................................................................................... 77 圖 4-52 SQUID量測之相變化溫度改變量實驗值與計算值比較(a:Ingot #1,b:Ingot #2,c:Ingot #3,d:Ingot #5,e:Ingot #8) ............................................ 78 圖 4-53 Ingot #1~#3、#5、#8相變化溫度改變量與文獻數值比較3D投影圖([a]Ni50.3Mn33.8In15.9[28];[b]Ni45Co5Mn36.7In13.3[53];[c]Ni51Mn33In16[54]) ............. 79 圖 4-54 (a)磁場沿不同方向施加示意圖;(b)特製夾具示意圖 .......................... 81 圖 4-55 Ingot #1試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 82 圖 4-56 Ingot #2試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 82 圖 4-57 Ingot #3試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 83 圖 4-58 Ingot #4試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 83 圖 4-59 Ingot #5試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 84 圖 4-60 Ingot #6試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係 與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 84 圖 4-61 Ingot #7試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 85 圖 4-62 Ingot #8試片室溫下(a)~(c)x、y、z方向磁致伸縮值對外加磁場關係圖與 (d)飽和磁致伸縮值對外加磁場關係圖 .................................................... 85 圖 4-63 Ni50Mn25+xIn25-x合金溫度(T)對應價電子原子濃度(e/a)關係圖,圖中列出母相與麻田散相之居禮溫度及合金相變化溫度(Ms)[66] ................................. 86 表目錄 表 2-1 NiMnX合金M、S、相變化溫度改變量計算值與實驗值比較 ......... 25 表 4-1 試片 ICP-MS 成分分析結果 .................................................................. 38 表 4-2 試片之母相晶格常數(a0)、母相單位晶格體積(V) ................................ 44 表 4-3 DSC量測之試片相變化溫度、熱焓值及居禮溫度 ................................ 55 表 4-4 不同檢定方法之相變化溫度比較 ............................................................ 60 表 4-5 試片之母相晶格常數(a0)、母相單位晶格體積(V)、相變化溫度(Ms, Mf, As, Af)、價電子原子濃度比(e/a)及價電子體積密度n(nm-3) .............................. 62 表 4-6 M-T曲線 (0.5kOe) 量測之試片相變化溫度(Ms、Mf、As、Af)、 、 ................................................................................................................................. 77

    [1] V. Kokorin and M. Wuttig,“Magnetostriction in ferromagnetic shape memory alloys,” Journal of magnetism and magnetic materials (2001), vol.234, pp. 25-30.
    [2] T. Kakeshita, K. Shimizu, S. Funada, and M. Date,“Magnetic Field-Induced Martensitic Transformations in Disordered and Ordered Fe--Pt Alloys,” Trans. Jpn. Inst. Met. (1984), vol.25, pp. 837-844.
    [3] K. Ullakko, J. Huang, C. Kantner, R. O’handley, and V. Kokorin,“Large magnetic‐field‐induced strains in Ni2MnGa single crystals,” Applied Physics Letters (1996), vol.69, pp. 1966-1968.
    [4] D. Jiles and C. Lo,“The role of new materials in the development of magnetic sensors and actuators,” Sensors and Actuators A: Physical (2003), vol.106, pp. 3-7.
    [5] A. Vasil’ev, A. Bozhko, V. Khovailo, I. Dikshtein, V. Shavrov, V. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, and J. Tani,“Structural and magnetic phase transitions in shape-memory alloys Ni 2+ x Mn 1-x Ga,” Physical Review B (1999), vol.59, pp. 1113.
    [6] X. Jin, M. Marioni, D. Bono, S. Allen, R. O’handley, and T. Hsu,“Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration,” Journal of Applied Physics (2002), vol.91, pp. 8222-8224.
    [7] R.D. James and M. Wuttig,“Magnetostriction of martensite,” Philosophical Magazine A (1998), vol.77, pp. 1273-1299.
    [8] R.C. Ohandley,“Model for strain and magnetization in magnetic shape-memory alloys,” Journal of Applied Physics (1998), vol.83, pp. 3263-3270.
    [9] S.J. Murray, M. Marioni, S. Allen, R. O’handley, and T. Lograsso,“6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Applied Physics Letters (2000), vol.77, pp. 886.
    [10] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa,“Magnetic and martensitic transformations of NiMnX (X= In, Sn, Sb) ferromagnetic shape memory alloys,” Applied Physics Letters (2004), vol.85, pp. 4358-4360.
    [11] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, and T. Kanomata,“Magnetic-field-induced shape recovery by reverse phase transformation,” Nature (2006), vol.439, pp.957-960.
    [12] H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, and H.J. Maier,“Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output,” Advanced Functional Materials (2009), vol.19, pp. 983-998.
    [13] L. Delaey, R. Krishnan, H. Tas, and H. Warlimont,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 1 Structural and microstructural changes associated with the transformations,” Journal of Materials Science (1974), vol.9, pp. 1521-1535.
    [14] R. Krishnan, L. Delaey, H. Tas, and H. Warlimont,“Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 2 Macroscopic Mechanical-Behavior,” Journal of Materials Science (1974), vol.9, pp. 1536-1544.
    [15] H. Warlimont, L. Delaey, R. Krishnan, and H. Tas,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 3 Thermodynamics and Kinetics,” Journal of Materials Science (1974), vol.9, pp. 1545-1555.
    [16] T. Tadaki, K. Otsuka, and K. Shimizu,“Shape memory alloys,” Annual Review of Materials Science (1988), vol.18, pp. 25-45.
    [17] 賴耿陽,“形狀記憶合金,” 復漢出版社, Vol. 1, pp. 1-44, 1999.
    [18] D. Dumme and C. Wayman,“Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2. Crystallography and General Features,” Metallurgical Transactions (1973), vol.4, pp. 147-152.
    [19] T. Schroeder and C. Wayman,“The two-way shape memory effect and other training phenomena in Cu- Zn single-crystals,” Scripta Metallurgica (1977), vol.11, pp. 225-230.
    [20] R. Grössinger, H. Sassik, D. Holzer, and N. Pillmayr,“Accurate measurement of the magnetostriction of soft magnetic material,” Journal (2000), pp. 35-47.
    [21] B. Cullity,“Magnetostriction and the Effect of Stress,” Introduction to Magnetic Materials (1972), vol.8, pp. 248-286.
    [22] J. Cui, T. Shield, and R. James,“Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape-memory alloy,” Acta Materialia (2004), vol.52, pp. 35-47.
    [23] K. Ullakko,“Magnetically controlled shape memory alloys: a new class of actuator materials,” Journal of materials Engineering and Performance (1996), vol.5, pp. 405-409.
    [24] S. Jeong, K. Inoue, S. Inoue, K. Koterazawa, M. Taya, and K. Inoue,“Effect of magnetic field on martensite transformation in a polycrystalline Ni2MnGa,” Materials Science and Engineering: A (2003), vol.359, pp. 253-260.
    [25] J. Monroe, I. Karaman, B. Basaran, W. Ito, R. Umetsu, R. Kainuma, K. Koyama, and Y. Chumlyakov,“Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys,” Acta Materialia (2012), vol.60, pp. 6883-6891.
    [26] T. Fukuda and T. Kakeshita,“Martensitic transformation in Pd doped FeRh exhibiting a metamagnetic transition,” Journal of Alloys and Compounds (2013), vol.563, pp. 192-196.
    [27] S.J. Murray, M. Marioni, S. Allen, R. O’handley, and T.A. Lograsso,“6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga,” Applied Physics Letters (2000), vol.77, pp. 886-888.
    [28] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, and B. Ouladdiaf,“Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In,” Physical Review B (2007), vol.75, pp. 104414.
    [29] A. Sozinov, A. Likhachev, N. Lanska, and K. Ullakko,“Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Applied Physics Letters (2002), vol.80, pp. 1746-1748.
    [30] X. Moya, L. Mañosa, A. Planes, T. Krenke, M. Acet, and E.F. Wassermann,“Martensitic transition and magnetic properties in Ni–Mn–X alloys,” Materials Science and Engineering: A (2006), vol.438, pp. 911-915.
    [31] T. Krenke, X. Moya, S. Aksoy, M. Acet, P. Entel, L. Mañosa, A. Planes, Y. Elerman, A. Yücel, and E. Wassermann,“Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys,” Journal of Magnetism and Magnetic Materials (2007), vol.310, pp. 2788-2789.
    [32] T. Miyamoto, W. Ito, R. Umetsu, R. Kainuma, T. Kanomata, and K. Ishida,“Phase stability and magnetic properties of Ni50Mn(50−x)Inx Heusler-type alloys,” Scripta Materialia (2010), vol.62, pp. 151-154.
    [33] M. Acet, E. Duman, E.F. Wassermann, and A. Planes,“Coexisting ferro-and antiferromagnetism in Ni2MnAl Heusler alloys,” Journal of applied physics (2002), vol.92, pp. 3867-3871.
    [34] W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, and K. Ishida,“Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys,” Metallurgical and Materials Transactions A (2007), vol.38, pp. 759-766.
    [35] L. Ma, H. Zhang, S. Yu, Z. Zhu, J. Chen, G. Wu, H. Liu, J. Qu, and Y. Li,“Magnetic-field-induced martensitic transformation in MnNiGa: Co alloys,”Applied Physics Letters (2008), vol.92, pp. 032509-032509-3.
    [36] Z. Wu, Z. Liu, H. Yang, Y. Liu, and G. Wu,“Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40-xIn10Cox polycrystalline alloys,” Intermetallics (2011), vol.19, pp. 1839.
    [37] R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, and O. Kitakami,“Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy,” Applied physics letters (2006), vol.88, pp. 192513.
    [38] W. Ito, X. Xu, R. Umetsu, T. Kanomata, K. Ishida, and R. Kainuma,“Concentration dependence of magnetic moment in Ni(50-x)CoxMn(50-y)Zy (Z= In, Sn) Heusler alloys,” Applied Physics Letters (2010), vol.97, pp. 242512-242512-3.
    [39] R. Kainuma, W. Ito, R. Umetsu, K. Oikawa, and K. Ishida,“Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys,” Applied Physics Letters (2008), vol.93, pp. 091906-091906-3.
    [40] S. Yu, L. Ma, G. Liu, Z. Liu, J. Chen, Z. Cao, G. Wu, B. Zhang, and X. Zhang,“Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys,” Applied physics letters (2007), vol.90, pp. 242501-242501-3.
    [41] K. Fukushima, K. Sano, T. Kanomata, H. Nishihara, Y. Furutani, T. Shishido, W. Ito, R. Umetsu, R. Kainuma, and K. Oikawa,“Phase diagram of Fe-substituted Ni–Mn–Sn shape memory alloys,” Scripta Materialia (2009), vol.61, pp. 813-816.
    [42] R. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, K. Oikawa, and K. Ishida,“Mössbauer study on martensite phase in Ni50Mn36.5(57)Fe0.5Sn13 metamagnetic shape memory alloy,” Applied Physics Letters (2008), vol.93, pp. 042509-042509-3.
    [43] S. Yan, J. Pu, B. Chi, and J. Li,“Effect of Co on the martensitic transformation, crystal structure and magnetization of Ni52. 5Mn23. 5Ga24 based ferromagnetic shape memory alloys,” Chinese Science Bulletin (2011), vol.56, pp. 796-802.
    [44] R. Sahoo, A.K. Nayak, K. Suresh, and A. Nigam,“Effect of Fe substitution on the magnetic, transport, thermal and magnetocaloric properties in Ni50Mn38− xFexSb12 Heusler alloys,” Journal of Applied Physics (2011), vol.109, pp. 123904.
    [45] L. Feng, W. Zhang, E. Liu, W. Wang, and G. Wu,“Martensitic Transformation and Magnetic Properties of NiMnAl: Fe, Co Ferromagnetic Shape Memory Alloys,” Functional Materials Letters (2013), vol.6.
    [46] V. Sharma, M. Chattopadhyay, A. Khandelwal, and S. Roy,“Martensitic transition near room temperature and the temperature-and magnetic-field-induced multifunctional properties of Ni49Cu1Mn34In16 alloy,” Physical Review B (2010), vol.82, pp. 172411.
    [47] M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, and K. Kobayashi,“Role of Electronic Structure in the Martensitic Phase Transition of Ni2Mn1+ xSn1-x Studied by Hard-X-Ray Photoelectron Spectroscopy and Ab Initio Calculation,” Physical review letters (2010), vol.104, pp. 176401.
    [48] Z. Liu, G. Li, Z. Wu, X. Ma, Y. Liu, and G. Wu,“Tailoring martensitic transformation and martensite structure of NiMnIn alloy by Ga doping In,” Journal of Alloys and Compounds (2012), vol.535, pp. 120-123.
    [49] M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. Allen, and R. O’Handley,“Crystal structure and transformation behavior of Ni–Mn–Ga martensites,” Scripta materialia (2006), vol.54, pp. 1797-1801.
    [50] A. Sozinov, A.A. Likhachev, and K. Ullakko. Magnetic and magnetomechanical properties of Ni-Mn-Ga alloys with easy axis and easy plane of magnetization. in SPIE's 8th Annual International Symposium on Smart Structures and Materials. 2001. International Society for Optics and Photonics.
    [51] C. Jiang, G. Feng, S. Gong, and H. Xu,“Effect of Ni excess on phase transformation temperatures of NiMnGa alloys,” Materials Science and Engineering: A (2003), vol.342, pp. 231-235.
    [52] Z. Han, D. Wang, C. Zhang, H. Xuan, J. Zhang, B. Gu, and Y. Du,“Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni–Mn–Sn alloys,” Materials Science and Engineering: B (2009), vol.157, pp. 40-43.
    [53] W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, and T. Kanomata,“Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy,” Applied Physics Letters (2008), vol.92, pp. 021908-021908-3.
    [54] F. Hu, J. Wang, J. Shen, B. Gao, J. Sun, and B. Shen,“Large magnetic entropy change with small thermal hysteresis near room temperature in metamagnetic alloys Ni 51 Mn 49-x In x,” Journal of Applied Physics (2009), vol.105, pp. 07A940-07A940-3.
    [55] J.-h. Kim, F. Inaba, T. Fukuda, and T. Kakeshita,“Effect of magnetic field on martensitic transformation temperature in Ni–Mn–Ga ferromagnetic shape memory alloys,” Acta materialia (2006), vol.54, pp. 493-499.
    [56] Y.-C. Lin and H.-T. Lee,“Magnetostriction and magnetic structure in annealed recrystallization of strain-forged ferromagnetic shape memory Fe–Pd–Rh alloys,” Journal of Applied Physics (2010), vol.107, pp. 09D312-09D312-3.
    [57] K. Ullakko, J. Huang, V. Kokorin, and R. O'handley,“Magnetically controlled shape memory effect in Ni2MnGa intermetallics,” Scripta Materialia (1997), vol.36, pp. 1133-1138.
    [58] L. Manosa, X. Moya, A. Planes, T. Krenke, M. Acet, and E. Wassermann,“Ni–Mn-based magnetic shape memory alloys: magnetic properties and martensitic transition,” Materials Science and Engineering: A (2008), vol.481, pp. 49-56.
    [59] http://www.mse.nthu.edu.tw/about/property.php?Sn=30.
    [60] http://rdweb.adm.nctu.edu.tw/page.php?serial=430.
    [61] http://www.techmaxasia.com/articles/detail/1196063383 (TechMax Technical Co., Ltd., Nov. 2003).
    [62] 施智超,“RT2材料的磁伸縮與磁性研究,” 國立清華大學博士論文 (2002), vol.2, pp. 7-29.
    [63] J.A. West and M.J. Aziz, Kinetic Disordering of Intermetallic Compounds Through First-and Second-Order Transitions by Rapid Solidification, in Ordering and Disordering in Alloys. 1992, Springer. p. 23-30.
    [64] R. Wang, J. Yan, H. Xiao, L. Xu, V. Marchenkov, L. Xu, and C. Yang,“Effect of electron density on the martensitic transition in Ni–Mn–Sn alloys,” Journal of Alloys and Compounds (2011), vol.509, pp. 6834-6837.
    [65] Q. Tao, Z. Han, J. Wang, B. Qian, P. Zhang, X. Jiang, D. Wang, and Y. Du,“Phase stability and magnetic-field-induced martensitic transformation in Mn-rich NiMnSn alloys,” AIP Advances (2012), vol.2, pp. 042181.
    [66] T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, and A. Planes,“Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys,” Physical Review B (2006), vol.73, pp. 174413.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE