研究生: |
鄧智烜 Teng, Jhih Syuan |
---|---|
論文名稱: |
多壁奈米碳管經有機聯胺處理之物化特性影響研究 Effect of Surface Treatment on Multi Walled Carbon Nanotubes by Organic Hydrazine |
指導教授: |
王本誠
Wang, Pen Cheng 許瑤真 Hsu, Yao Jane |
口試委員: |
魏德新
Wei, Der Hsin 林滄浪 Lin, Tsang Lang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 奈米碳管 、有機聯胺 |
外文關鍵詞: | CNT, organic hydrazine |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以乙炔(C2H2)做為碳源氣體,並調節氫氣(H2)和氬氣(Ar)的流量,使用熱裂解化學氣相沉積法的方式,目前於600oC條件下成功成長多壁奈米碳管(MWCNTs)於二氧化矽(SiO2)基板上。而本論文也有將製程氣體流量、成長溫度以及製程壓力等參數對奈米碳管成長的影響做簡單的說明。
接著我們會對使用熱裂解化學氣相沉積法成長出來的奈米碳管薄膜做化學修飾,化學修飾是利用汞弧燈(Mercury short-arc lamps)以光化學反應(Photochemical Reaction)的方式去產生活性大的自由基,希望藉由光化學反應產生的自由基和我們使用熱裂解化學氣相沉積法成長出來的奈米碳管去做反應。而在光化學反應部分則主要是使用汞弧燈對四種結構不同的有機聯胺去做照射,目的是希望藉由光化學反應產生的NO2自由基或NH2自由基能接上奈米碳管表面,而硝基對碳管來說是一拉電子基,胺基則是推電子基,藉此可以對奈米碳管的電性或功函數(Work Function)做一些調變。實驗部份我們使用了場發射電子顯微鏡(Field Emission Scanning Microscope )、四點探針(Four-Point Probe)、拉曼光譜儀(Raman Spectroscopy)、紫外光光電子能譜(Ultra-violet photoelectron Spectroscopy ) 及X 光光電子發射能譜術(X-ray Photoemission Spectroscopy) 做量測,了解奈米碳管在經化學修飾後其電性及結構上的改變。
In this study, the C2H2 was used as carbon source in the chemical vapor deposition to grow carbon nanotubes at 600oC by controlling both gas flow rate of H2 and Ar. Through changing the gas flow rate, we successfully grew multi-wall carbon nanotubes (MWCNTs). To understand the doping effects on the functionalized MWCNTs, different organic hydrazines with functional groups such as phenyl,–NO2 or –NH2 were used to chemically treat MWCNTs. To characterize the functionalization of MWCNTs, we employed the Field Emission Scanning Microscope for the morphology, and Four-Point Probe, Raman Spectroscopy, Ultra-violet photoelectron Spectroscopy and X-ray Photoemission Spectroscopy for the conducting characteristics, structure and chemical bonding after chemical modification. We found the MWCNTs acquired some nitrogenous bonding structures after the treatment of UV-irradiated 2-Nitrophenylhydrazine solution on the sample. The electric conductivity also showed improvement via the treatment of UV-irradiated 2-Nitrophenylhydrazine, which displayed addition reaction on the -bonds of MWCNTs. We therefore proposed a mechanism to illustrate the functionalization on MWCNTs.
[1] H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
[2] S. Liu, Y.J. LU, M.M. Kappes, J.A. Ibers, The Structure of the C60 Molecule: X-Ray Crystal Structure Determination of a Twin at 110 K, Science, 254 (1991) 408-410.
[3] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
[4] M. Kaempgen, G.S. Duesberg, S. Roth, Transparent carbon nanotube coatings, Applied Surface Science, 252 (2005) 425-429.
[5] A. Hirsch, Functionalization of Single-Walled Carbon Nanotubes, Angew. Chem. Int. Ed., 41 (2002) 1853-1859.
[6] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, London: Imperial college press, 35 (1998) 73-81.
[7] Y. Ando, X. Zhao, T. Sugai, M. Kumar, Growing carbon nanotubes, materialstoday, 7 (2004) 22-29.
[8] T. Guo, P. Nikolaev, A.G. Rinzler, D. Tomanek, D.T. Colbert, R.E. Smalley, Self-Assembly of Tubular Fullerenes, J. Phys. Chem. , 99 (1995) 10694-10697.
[9] M. Kumar, Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes:A Review on Growth Mechanism and Mass Production, J. Nanosci. Nanotechnol., 10 (2010) 3739-3758.
[10] H. Peng, L.B. Alemany , J.L. Margrave, V.N. Khabashesku, Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon Nanotubes, J. Am. Chem. Soc., 125 (2003) 15174-15182.
[11] J. Chen, M.A. Hamon, H. Hu, Y. Chen, A.M. Rao, P.C. Eklund, R.C. Haddon, Solution Properties of Single-Walled Carbon Nanotubes, SCIENCE, 282 (1998) 95-98.
[12] M. Holzinger, O. Vostrowsky, A. Hirsch, F.Hennrich, M. Kappes, R. Weiss, F. Jellen, Sidewall Functionalization of Carbon Nanotubes, Angew. Chem. Int. Ed., 40 (2001) 4002-4005.
[13] D. Eder, Carbon Nanotube−Inorganic Hybrids, Chem. Rev., 110 (2010) 1348-1385.
[14] S. Chaudhary, H. Lu, A.M. Muller, C.J. Bardeen, M. Ozkan, Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells, Nano Lett., 7 (2007) 1973-1979.
[15] C.Y. Su, A.Y. Lu, Y.L. Chen, C.Y. Wei, P.C. Wang, C.H. Tsai, Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells, J. Mater. Chem., 20 (2010) 7034-7042.
[16] P.C. Wang, Y.C. Liao, Y.L. Lai, Y.C. Lin, C.Y. Su, C.H. Tsai, Y.J. Hsu, Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type materials by a facile hydrazine vapor exposure process, Materials Chemistry and Physics, 134 (2012) 325-332.
[17] M. Arvis, C. Devillers, M. Gillois, M. Curtat, Isothermal flash photolysis of hydrazine, J. Phys. Chem., 78 (1974) 1356-1360.
[18] U. Meyer, S. Ko¨stler, V. Ribitsch, W. Kern, Photochemical Surface Modification of Polytetrafluoroethylene with Hydrazine: Characterization of the Surface with Zeta-Potential Measurements and Spectroscopic Techniques, Macromol. Chem. Phys., 206 (2005) 210-217.
[19] R.R. Wenner, A.O. Beckman, THE QUANTUM YIELD IN THE PHOTOCHEMICAL DECOMPOSITION OF GASEOUS HYDRAZINE, J. Am. Chem. Soc., 54 (1932) 2787-2797.
[20] D.A. Ramsay, The Absorption Spectra of Free NH and NH2 Radicals Produced by the Flash Photolysis of Hydra-zine, J. Phys. Chem., 57 (1953) 415-418.
[21] D. Husain, R.G.W. Norrish, The Explosive Oxidation of Ammonia and Hydrazine Studied by Kinetic Spectroscopy, The Royal Society, 273 (1963) 145-164.
[22] Vaghjiani, L. Ghanshyam, Ultraviolet absorption cross sections for N2H4 vapor between 191–291 nm and H (2S) quantum yield in 248 nm photodissociation at 296 K, The Journal of chemical physics, 98 (1993) 2123-2131.
[23] H. Tantang, J.Y. Ong, C.L. Loh, X. Dong, P. Chen, Y. Chen, X. Hu, L.P. Tan, L.J. Li, Using oxidation to increase the electrical conductivity of carbon nanotube electrodes, CARBON, 47 (2009) 1867-1870.
[24] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes, J. Phys. Chem. B, 103 (1999) 8116-8121.
[25] A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes, Science, 275 (1997) 187-191.
[26] M.R. McPhail, J.A. Sells, Z. He, C.C. Chusuei, Charging Nanowalls: Adjusting the Carbon Nanotube Isoelectric Point via Surface Functionalization, J. Phys. Chem. C, 113 (2009) 14102–14109.
[27] M.E. Lipin´ ska, S.L.H. Rebelo, M.F.R. Pereira, J.A.N.F. Gomes, C. Freire, J.L. Figueiredo, New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives, CARBON, 50 (2012) 3280-3294.
[28] R. Graupner, J. Abraham, A. Vencelova, T. Seyller, F. Hennrich, M.M. Kappes, A. Hirsch, L. Ley, Doping of single-walled carbon nanotube bundles by Brønsted acids, Phys. Chem. Chem. Phys., 5 (2003) 5472-5476.
[29] C. Bussy, M. Pinault, J. Cambedouzou, M.J. Landry, P. Jegou, M. Mayne-L'hermite, P. Launois, J. Boczkowski, S. Lanone, Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity, Part Fibre Toxicol, 9 (2012) 1-15.
[30] K. Ghosh, M. Kumar, T. Maruyama, Y. Ando, Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution, CARBON, 48 (2010) 191-200.