簡易檢索 / 詳目顯示

研究生: 黃尉庭
Huang, Wei-Ting
論文名稱: 低耐用性快閃記憶體壽命提升之動態損害感知策略
Dynamic Damage-Aware Strategy to Improve Lifetime of Low Endurance Flash Memory
指導教授: 石維寬
Shih, Wei-Kuan
口試委員: 張原豪
Chang, Yuan-Hao
徐讚昇
Hsu, Tsan-Sheng
衛信文
Wei, Hsin-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 23
中文關鍵詞: 快閃記憶體壽命低耐用性三層單元
外文關鍵詞: Flash Memory, Lifetime, Low Endurance, TLC
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有別於傳統的機械式儲存裝置,快閃記憶體除了也擁有斷電後資料仍保存於其中的特性,其防震和相對於傳統硬碟較低能耗和較高讀寫速度的特點使得快閃記憶體逐漸成為電子產品儲存元件的主流。而單位晶元能夠儲存較多資料的三層單元(Triple-Level Cell, TLC)甚至是四層單元(Quadra-Level Cell, QLC)因其成本較低,已逐漸取代只能儲存較少資料的單層單元(Single-Level Cell, SLC)和雙層單元(Multi-Level Cell, MLC)成為快閃記憶體的主要儲存架構。然而其相對較低的耐用性,也就是使用壽命較短的問題則成為研發相關產品的主要困境。我們提出了一個方法,利用結合了條件式位元轉換和位址映對的損害感知策略,盡可能地將寫入快閃記憶體的資料轉換為對壽命危害較小的型態。最後經效能分析顯示,我們的動態損害感知策略與不經任何處理而直接將資料順序寫入的作法相比,效能改善可達15%以上。


    Flash memory has not only its non-volatility as traditional Hard Disk Drive (HDD), but also shock-resistance, lower energy consumption and higher read/write speed compared with HDD. A cell with more information storage capability, such as Triple-Level Cell (TLC) or even Quadra-Level Cell (QLC), gradually becomes the mainstream of flash memory, replacing Multi-Level Cell (MLC) and Single-Level Cell (SLC) because of its comparatively lower cost. However, its lower endurance in contrast, as known as its shorter lifetime, becomes the critical problem in the development of flash memory. We propose the Dynamic Damage-Aware Strategy, compound with Conditional Bit-Flip and Address Mapping, trying to transform the data to be written in flash memory into the data type with lower damage to lifetime. With the performance evaluation, our Dynamic Damage-Aware Strategy shows 15% or even more enhancement of performance compared with directly sequential write.

    摘要 目錄 第一章 簡介與動機-------------------1 第二章 快閃記憶體-------------------3 第三章 系統架構---------------------10 3.1 系統概觀---------------------10 3.2 條件式位元翻轉----------------10 3.3 位址映對---------------------12 第四章 效能評估---------------------17 4.1 機率分析---------------------17 4.2 危害因子參數------------------18 4.3 壽命改善效能評估--------------18 第五章 結論和未來展望----------------21 第六章 參考-------------------------22

    [1] Li, B., Shan, S., Hu, Y., and Li, X. (2014). “PartialSET: write speedup of PCM main memory.” In Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 1–4. IEEE.
    [2] J. Yue, Y. Zhu, “Accelerating Write by Exploiting PCM Asymmetries”, IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 282-293, 2013.
    [3] Yuan-Hao Chang, Jen-Wei Hsieh, Tei-Wei Kuo, “Endurance enhancement of flash-memory storage systems: an efficient static wear leveling design”, Proceedings of the 44th annual Design Automation Conference, June 04-08, 2007, San Diego, California
    [4] Feng Chen, Tian Luo, Xiaodong Zhang, “CAFTL: a content-aware flash translation layer enhancing the lifespan of flash memory based solid state drives”, Proceedings of the 9th USENIX conference on File and stroage technologies, p.6-6, February 15-17, 2011, San Jose, California
    [5] T. Chen, Y. Hsiao, Y. Hsing, C. Wu, “An adaptive-rate error correction scheme for NAND flash memory”, Proc. 27th IEEE VLSI Test Symp., pp. 53-58, 2009.
    [6] J. Jeong, S. S. Hahn, S. Lee, J. Kim, “Improving NAND endurance by dynamic program and erase scaling”, Proc. USENIX Conf. Hot Topics Stor. File Syst., pp. 4, 2013.
    [7] A. Jagmohan, M. Franceschini, L. A. Lastras-Montao, J. Karidis, “Adaptive endurance coding for NAND Flash”, 2010 IEEE Globecom Workshops, pp. 1841-1845, 2010.
    [8] C. Lee et al. “A 32-Gb MLC NAND flash memory with Vth endurance enhancing in 32nm CMOS”, JSSC 2011.
    [9] D. Wei, L. Deng, Z. Peng, Q. Liyan, X. Peng, “NRC: A nibble remapping coding strategy for NAND flash reliability extension”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35, no. 11, pp. 1942-1946, Nov. 2015.
    [10] Wonyoung Lee, Mincheol Kang, Seokin Hong, Soontae Kim, “Inter-Page-Based Endurance-Enhancing Lower State Encoding for MLC NAND Flash Memory Storage”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 2033 – 2045, 15 May 2019.
    [11] S. Tanakamaru, C. Hung, K. Takeuchi, "Highly reliable and low power SSD using asymmetric coding and stripe bitline-pattern elimination programming", IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 85-96, Jan. 2012.
    [12] Q. Xu, T. M. Chen, Y. Hu, P. Gong, "Write pattern format algorithm for reliable NAND-based SSDs", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 61, no. 7, pp. 516-520, Jul. 2014.
    [13] J. Guo, Z. Chen, D. Wang, Z. Shao, Y. Chen, "DPA: A data pattern aware error prevention technique for NAND flash lifetime extension", Proc. 19th Asia South Pacific Design Automat. Conf., pp. 592-597, Jan. 2014.
    [14] J. Li, K. Zhao, X. Zhang, J. Ma, M. Zhao, T. Zhang, "How much can data compressibility help to improve NAND flash memory lifetime?", Proc. FAST, pp. 227-240, 2015.
    [15] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, "Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives," Proc. IEEE, pp. 1666-1704, 2017.

    QR CODE