簡易檢索 / 詳目顯示

研究生: 葉皇穀
Yeh, Huang-Ku
論文名稱: 具可解釋性的適性化數學文字題生成系統
Adaptive Math Word Problem Generation with XAI
指導教授: 許聞廉
Hsu, Wen-Lian
口試委員: 張詠淳
Chang, Yung-Chun
陳宜欣
Chen, Yi-Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 數學文字題自然語言理解自然語言生成適性化學習
外文關鍵詞: Math Word Problem, Natural Language Understanding, Natural Language Generation, Adaptive Learning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數學文字題是一種以文字來描述數學問題的題目,因此它比起一般的數學計算式題目更像是一種情境描述的表達。小朋友必須把在學校所學習到的基本數學運算、邏輯推演以及日常生活中的綜合知識融合成解題所需要的概念,才能夠有系統的解決問題。

    近幾年來,隨著對個體差異的重視,客製化的教學方式日益興盛。因為每個人的學習能力有所不同,標準化的教學方式,並不一定能夠適用於每一位學習者。因此若要讓學習者的學習效益最大化,客製化的教學就顯得格外重要。此外又因為全球疫情的影響,許多學生沒有辦法獲得充足的教育資源,因此本研究希望能夠透過設計一套自動的客製化數學文字題生成系統來幫助學生的學習。

    我們透過成分句法剖析將數學文字題中的實體進行初步分析,並且針對數學文字題中常見的特定實體,如物件、量詞、動詞、地點以及行為者(Agent)透過知識本體來進行更進一步的語義分析。本論文的貢獻如下: (1)提出了一個基於剖析結果的抽取方法,其能夠有效地擷取出題目中的物件及量詞,並同時獲得量詞與對應物件的所屬關係。(2)加入適性化學習的元素來評估生成題目的難易度。(3)設計一套情境詞系統,能夠讓使用者透過自然語言來指定題目的生成方向。在生成的過程中我們使用核取樣(Nucleus Sampling),能夠在避免長尾效應的同時,也確保生成數學文字題的多樣性。
    實驗結果顯示,我們系統生成的數學文字題的對數困惑度得到了3.593,並且在自雙語替換評測(self-BLEU)中得到了0.747的分數。此外我們也透過問卷調查的方式來收集使用者回饋,得到4.3/5分的使用者喜好度,顯示本研究生成的結果具有相當的成效。


    Math Word Problem is a kind of math problem which uses words to describe the problem. Compared to the math formula problem, it is more like a scenario description in our life. The students should combine the basic math operation, logic inference learned from school, and general knowledge in daily life to solve the math word problem systematically and effectively.

    In recent years, with the emphasis on individual differences, customized instruction education has become increasingly prosperous. Because the learning abilities of each learners are different, standardized teaching methods might not be suitable for everyone. In order to maximize the benefit of learners, customized instruction education is important. In addition, many students cannot obtain sufficient educational resources since the global pandemic. Therefore, this research aims to design an automatic customized math word problems generation system to help the students.

    We conduct a preliminary analysis of the entities in math word problems through constituent parsing, and further semantic analysis on specific entities, such as Object, Quantifier, Verb, Location, and Agent by the ontology. The contributions of this thesis are: (1) Proposed an extraction method based on the parsing results, which can effectively extract the objects and quantifiers, and obtain the dependency relation between quantifiers and corresponding objects at the same time. (2) Added the consideration of adaptive learning to evaluate the difficulty of the generated math word problems. (3) Designed a scenario word system that allows users to specify the generation direction through natural language. In the process of generating, we use Nucleus Sampling, which can avoid the long tail effect while ensuring the diversity of the generated math word problems.
    The experimental result shows that, the proposed generation system achieve 3.593 of logarithm perplexity score and 0.747 of self-BLEU. Besides, we carry out a questionnaire survey to collect user feedback, and receive 4.3/5 of user preference. These can illustrate the system is quite effective.

    摘要 i Abstract iii 誌謝 v 1 緒論 (Introduction) 1 1.1 研究動機 (Motivation) 1 1.2 研究目的 (Research Objectives) 2 1.3 中文數學文字題生成的挑戰 (Challenges) 2 1.4 論文架構 (Outline) 3 1.5 名詞定義 (Terms and Definitions) 3 2 相關文獻探討 (Related Work) 5 2.1 自然語言處理 (Natural Language Processing) 5 2.1.1 詞頻­逆向文本頻率 (TF-­IDF) 5 2.1.2 剖析樹 (Parsing Tree) 7 2.1.3 取樣 (Sampling) 8 2.1.4 本體論 (Ontology) 9 2.1.5 文字相似度評估 (Text Similarity Measuring) 9 2.2 自然語言生成 (Natural Language Generation) 11 2.3 文本風格轉換 (Text Style Transfer) 12 2.4 數學文字題生成 (Math Word Problem Generation) 12 2.5 可解釋人工智慧 (Explainable Artificial Intelligence) 13 3 方法 (Method) 14 3.1 方法概述 (Method Overview) 14 3.2 問題陳述 (Problem Statement) 18 3.2.1 研究範圍 (Scope of the Study) 18 3.2.2 實體定義 (Entity Definition) 18 3.3 語義剖析 (Semantic Parsing) 21 3.3.1 斷詞 (Segmentation) 21 3.3.2 剖析 (Parsing) 23 3.3.3 規範詞彙庫 (Vocabulary Definition) 23 3.4 實體抽取 (Entity Extraction) 24 3.4.1 Role 抽取 (Role Extraction) 24 3.4.2 Role 類型解析 (Role Type Distinguish) 27 3.5 資料分析 (Data Analysis) 29 3.5.1 詞彙難易度評估 (Vocabulary Difficulty Measuring) 29 3.5.2 Quantifier 類型解析 (Quantifier Type Resolution) 30 3.5.3 角色清單 (Character List) 31 3.6 實體間關係解析 (Entity Relation Resolution) 32 3.6.1 詞彙相似度計算 (Word Similarity Calculation) 32 3.6.2 Object­-Quantifier 依存關係解析 (Object-­Quantifier Dependency Relation Resolution) 33 3.6.3 基於 Quantifier 搭配的 VH 分類 (VH Classification by Quantifier Collocation) 37 3.6.4 情境詞系統 (Scenario Word Engagement) 40 3.7 模板組織 (Template Organization) 41 3.7.1 題目結構組織 (Structure Organization) 41 3.7.2 模板分類 (Template Classification) 41 3.7.3 模板屬性標註 (Template Attribute Labeling) 43 3.7.4 模板生成 (Template Generation) 45 3.8 數學文字題生成 (Math Word Problem Generation) 45 3.8.1 主要生成流程 (Main Generation Process) 46 3.8.2 數字替換 (Numeric Replacement) 51 3.8.3 使用者介面與使用者體驗 (User Interface and User Experience) 52 4 效能評估 (Experiment) 56 4.1 實驗語料 (Dataset) 56 4.2 實驗評估 (Evaluation) 57 4.2.1 評估指標 (Evaluation Metric) 57 4.2.2 評估成效 (Evaluation Result) 57 4.3 使用者回饋 (User Feedback) 59 4.4 案例研究 (Case Study) 62 5 結論與未來展望 (Conclusion and Future Work) 66 5.1 結論 (Conclusion) 66 5.2 未來展望 (Future Work) 66 參考文獻 68

    [1] A. A. Bekele, “Automatic generation of amharic math word problem and equation,” Journal of Computer and Communications, vol. 8, no. 8, pp. 59–77, 2020.
    [2] C.­-C. Liang, K.­-Y. Hsu, C.­-T. Huang, C.­-M. Li, S.­-Y. Miao, and K.­-Y. Su, “A tag­-based statistical english math word problem solver with understanding, reasoning and explanation.,” in IJCAI, pp. 4254–4255, 2016.
    [3] M. O. Riedl, “Human­-centered artificial intelligence and machine learning,” Human Behavior and Emerging Technologies, vol. 1, no. 1, pp. 33–36, 2019.
    [4] P. I. Pavlov, “Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex,” Annals of neurosciences, vol. 17, no. 3, p. 136, 2010.
    [5] S. F. Maier and M. E. Seligman, “Learned helplessness: theory and evidence.,” Journal of experimental psychology: general, vol. 105, no. 1, p. 3, 1976.
    [6] Y. H. Ting and F. Bond, “Comparing classifier use in chinese and japanese,” in Proceedings of the 26th Pacific Asia Conference on Language, Information, and Computation, pp. 264– 271, 2012.
    [7] Q. Hu, The acquisition of Chinese classifiers by young Mandarin­-speaking children. PhD thesis, Boston University, 1993.
    [8] M. S. Erbaugh, “Taking stock: The development of chinese noun classifiers historically and in young children,” Noun classes and categorization, pp. 399–436, 1986.
    [9] C. N. Li and S. A. Thompson, Mandarin Chinese: A functional reference grammar, vol. 3. Univ of California Press, 1989.
    [10] S. E. Robertson and S. Walker, “Some simple effective approximations to the 2­-poisson model for probabilistic weighted retrieval,” in SIGIR'94, pp. 232–241, Springer, 1994.
    [11] M. Zhang, “A survey of syntactic­-semantic parsing based on constituent and dependency structures,” Science China Technological Sciences, pp. 1–23, 2020.
    [12] H. Zhang, D. Duckworth, D. Ippolito, and A. Neelakantan, “Trading off diversity and quality in natural language generation,” arXiv preprint arXiv:2004.10450, 2020.
    [13] A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,” arXiv preprint arXiv:1805.04833, 2018.
    [14] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” arXiv preprint arXiv:1904.09751, 2019.
    [15] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.
    [16] B. Xu, Y. Xu, J. Liang, C. Xie, B. Liang, W. Cui, and Y. Xiao, “Cn­-dbpedia: A neverending chinese knowledge extraction system,” in International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 428–438, Springer, 2017.
    [17] Z. Dong and Q. Dong, “Hownet­-a hybrid language and knowledge resource,” in International Conference on Natural Language Processing and Knowledge Engineering, 2003. Proceedings. 2003, pp. 820–824, IEEE, 2003.
    [18] K.­-J. Chen, S.­-L. Huang, Y.­-Y. Shih, and Y.­-J. Chen, “Extended­-hownet: A representational framework for concepts,” in Proceedings of OntoLex 2005­-Ontologies and Lexical Resources, 2005.
    [19] W.­-Y. Ma and Y.­-Y. Shih, “Extended hownet 2.0–an entity­-relation common­-sense representation model,” in Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018.
    [20] S. R. Maetschke, M. Simonsen, M. J. Davis, and M. A. Ragan, “Gene ontology­-driven inference of protein–protein interactions using inducers,” Bioinformatics, vol. 28, no. 1, pp. 69–75, 2012.
    [21] V. Tresp, M. Bundschus, A. Rettinger, and Y. Huang, “Towards machine learning on the semantic web,” in Uncertainty reasoning for the Semantic Web I, pp. 282–314, Springer, 2006.
    [22] S. E. Middleton, D. De Roure, and N. R. Shadbolt, “Ontology­-based recommender systems,” in Handbook on ontologies, pp. 477–498, Springer, 2004.
    [23] W. H. Gomaa, A. A. Fahmy, et al., “A survey of text similarity approaches,” International Journal of Computer Applications, vol. 68, no. 13, pp. 13–18, 2013.
    [24] Y. Xu, J. Liu, W. Yang, and L. Huang, “Incorporating latent meanings of morphological compositions to enhance word embeddings,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1232– 1242, 2018.
    [25] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge.,” Psychological review, vol. 104, no. 2, p. 211, 1997.
    [26] P. D. Turney, “Mining the web for synonyms: Pmi­-ir versus lsa on toefl,” in European conference on machine learning, pp. 491–502, Springer, 2001.
    [27] E. Reiter and R. Dale, Building natural language generation systems. Cambridge university press, 2000.
    [28] K. R. McKeown, “The text system for natural language generation: An overview,” in 20th Annual Meeting of the Association for Computational Linguistics, (Toronto, Ontario, Canada), pp. 113–120, Association for Computational Linguistics, June 1982.
    [29] A. Gatt and E. Krahmer, “Survey of the state of the art in natural language generation: Core tasks, applications and evaluation,” Journal of Artificial Intelligence Research, vol. 61, pp. 65–170, 2018.
    [30] A. B. Sai, A. K. Mohankumar, and M. M. Khapra, “A survey of evaluation metrics used for nlg systems,” arXiv preprint arXiv:2008.12009, 2020.
    [31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.
    [32] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur, “Recurrent neural network based language model,” in Eleventh annual conference of the international speech communication association, 2010.
    [33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, pp. 5998–6008, 2017.
    [34] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward controlled generation of text,” in International Conference on Machine Learning, pp. 1587–1596, PMLR, 2017.
    [35] K.­-H. Zeng, M. Shoeybi, and M.­-Y. Liu, “Style example­-guided text generation using generative adversarial transformers,” arXiv preprint arXiv:2003.00674, 2020.
    [36] N. Dai, J. Liang, X. Qiu, and X. Huang, “Style transformer: Unpaired text style transfer without disentangled latent representation,” arXiv preprint arXiv:1905.05621, 2019.
    [37] J. Li, R. Jia, H. He, and P. Liang, “Delete, retrieve, generate: A simple approach to sentiment and style transfer,” arXiv preprint arXiv:1804.06437, 2018.
    [38] K. Nandhini and S. R. Balasundaram, “Math word question generation for training the students with learning difficulties,” in Proceedings of the International Conference & Workshop on Emerging Trends in Technology, pp. 206–211, 2011.
    [39] D. M. Rembert, N. A. Mack, and J. E. Gilbert, “Exploring the needs and interests of fifth graders for personalized math word problem generation,” in Proceedings of the 18th ACM International Conference on Interaction Design and Children, pp. 592–597, 2019.
    [40] Q. Zhou and D. Huang, “Towards generating math word problems from equations and topics,” in Proceedings of the 12th International Conference on Natural Language Generation, pp. 494–503, 2019.
    [41] R. Koncel­-Kedziorski, I. Konstas, L. Zettlemoyer, and H. Hajishirzi, “A theme­-rewriting approach for generating algebra word problems,” arXiv preprint arXiv:1610.06210, 2016.
    [42] B. Goodman and S. Flaxman, “European union regulations on algorithmic decisionmaking and a “right to explanation",” AI magazine, vol. 38, no. 3, pp. 50–57, 2017.
    [43] A. Adadi and M. Berrada, “Peeking inside the black­-box: a survey on explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52138–52160, 2018.
    [44] Y.­-M. Hsieh, D.­-C. Yang, and K.­-J. Chen, “Improve parsing performance by self­-learning,” International Journal of Computational Linguistics & Chinese Language Processing, vol. 12, no. 2, pp. 195–216, 2007.
    [45] Y.­-M. Hsieh, M.­-H. Bai, J. S. Chang, and K.­-J. Chen, “Improving PCFG chinese parsing with context­-dependent probability re­-estimation,” in Proceedings of the Second CIPSSIGHAN Joint Conference on Chinese Language Processing, pp. 216–221, 2012.
    [46] D.­-C. Yang, Y.­-M. Hsieh, and K.­-J. Chen, “Resolving ambiguities of chinese conjunctive structures by divide­-and­-conquer approaches,” in Proceedings of the Third International Joint Conference on Natural Language Processing, 2008.
    [47] C. K. I. P. Group, “中文詞類分析 (三版) 技術報告 93­-05,” tech. rep., Academia Sinica Institute of Information Science, 1993.
    [48] W.­-Y. Ma and K.­-J. Chen, “Introduction to ckip chinese word segmentation system for the first international chinese word segmentation bakeoff,” in Proceedings of the second SIGHAN workshop on Chinese language processing, pp. 168–171, 2003.
    [49] A. C. Graesser, D. S. McNamara, M. M. Louwerse, and Z. Cai, “Coh­-metrix: Analysis of text on cohesion and language,” Behavior research methods, instruments, & computers, vol. 36, no. 2, pp. 193–202, 2004.
    [50] 蔡筱倩 et al., 兒童文本詞頻詞彙指標分析系統建置與應用. PhD thesis, Graduate Institute of Educational Information and Measurement, National Taichung University of Education, 2013.
    [51] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2­-3, pp. 146–162, 1954.
    [52] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9, pp. 490–499, 1960.
    [53] E. Montahaei, D. Alihosseini, and M. S. Baghshah, “Jointly measuring diversity and quality in text generation models,” arXiv preprint arXiv:1904.03971, 2019.
    [54] Y. Zhu, S. Lu, L. Zheng, J. Guo, W. Zhang, J. Wang, and Y. Yu, “Texygen: A benchmarking platform for text generation models,” in The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1097–1100, 2018.
    [55] J. Li, Y. Lan, J. Guo, and X. Cheng, “On the relation between quality­-diversity evaluation and distribution­-fitting goal in text generation,” in International Conference on Machine Learning, pp. 5905–5915, PMLR, 2020.

    QR CODE