簡易檢索 / 詳目顯示

研究生: 范韻如
Fan, Yun-Ju
論文名稱: 碳酸鈉/改質氧化石墨烯應用於室溫人體呼氣二氧化碳之感測器
Application of Na2CO3/Modified Graphene Oxide on Room-temperature CO2 Sensor from Human Breath
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 李紫原
彭殿王
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 氣體感測器二氧化碳人體呼氣碳酸鈉成核還原氧化石墨烯
外文關鍵詞: gas sensor, carbon dioxide, human breath, sodium carbonate, nucleation, reduced graphene oxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,應用於室溫環境下的二氧化碳感測器逐漸被重視,因其對於環境檢測與及早診斷人體疾病具有重要的角色。因此,設計一低成本、易於製備且能夠在室溫下應用的二氧化碳感測器尤為重要。以碳材料為基底且添加金屬氧化物與高分子以產生協同作用的感測材料,被廣泛研究作為電阻式氣體感測器,並且能夠展現良好的感測靈敏度以及選擇性。
    本實驗首先藉由水熱法製備氮摻雜石墨烯,爾後利用界面聚合法聚合環氧丙醇高分子於其上,最後加入定量之氫氧化納溶液,於室溫下合成碳酸鈉化合物於材料之中。氮摻雜與高分子的協同作用能夠幫助提升碳酸鈉之成核速率,進而提升二氧化碳感測器之感測靈敏度。此製程除了減少總體製程時間外,於室溫下合成也可降低實際應用之設備成本,可望提升感測器之應用範圍。本研究所製備的電極,可在5%二氧化碳環境與相對濕度13%的室溫環境下達到平均9.44%的感測靈敏度,感測時間約為360秒,且能夠判別不同濃度之二氧化碳。此外,在人體呼氣感測分析上,本電極在不同呼氣吸附之模式下皆具有相當好的穩定度與再現性。因此,綜合以上所述,本研究成功製備出一具有高度商售量產潛力且可應用於人體呼氣中二氧化碳檢測的感測器。


    The design of carbon dioxide (CO2) gas sensors operated under ambient conditions is crucial for environmental monitoring as well as disease screening for early diagnosis in the human body. It is important to develop CO2 sensors with low cost, ease of fabrication, and operability without heating. Recently, carbon-based materials, with the synergistic effect of metal oxides and polymers, have been widely investigated as resistive-type gas sensors with high sensitivity and selectivity. In this study, we modified N-doped reduced graphene oxide with the growth of a glycidol polymer (PEP) and crystalline sodium carbonate (Na2CO3). According to the structural analysis, Na2CO3 was fabricated with an increase in the nucleation rate as a result of the synergetic effect of the glycidol polymer and nitrogen doping. Furthermore, the fabrication process of Na2CO3 was facile, rapid, and consumed less energy. With respect to the sensing performance, the as-fabricated sensor showed a high response of 9.44% and fast response time of 400 s for the 5% CO2 sensing test operating under low ambient humidity and room temperature. In addition, the following human breath test also showed high stability and reproducibility of the sensors for breath analysis. In summary, the technology demonstrated in this work not only shows high sensing performance, but great potential in practical applications of human breath.

    摘要 i Abstract ii 目錄 iv 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 慢性肺阻塞病 3 2.1.1 慢性肺阻塞病之病理特徵 3 2.1.2 慢性肺阻塞病之檢測及其困難 4 2.1.3 人體呼氣檢測介紹 5 2.2 石墨烯簡介 7 2.2.1 石墨烯的特性和結構 7 2.2.2石墨稀的製備方式 8 2.2.3 石墨烯之改質 11 2.3 環氧丙醇高分子簡介 12 2.3.1 環氧丙醇高分子的基本物理性質與應用 12 2.3.2 環氧丙醇高分子的製程方法 12 2.4 碳酸鈉的簡介 13 2.4.1 碳酸鈉的基本物理性質與應用    13 2.4.2 碳酸鈉的製程方法 13 2.5 氣體感測器 14 2.6石墨烯感測器 17 第三章 實驗步驟與研究方法 26 3.1 實驗製程設備與分析儀器 26 3.1.1 超音波震盪器 26 3.1.2 掃描式電子顯微鏡 26 3.1.3 拉曼光譜儀 27 3.1.4 傅立葉轉換紅外光譜儀 28 3.1.5 X光繞射分析儀 28 3.1.6 X射線光電子能譜儀 29 3.1.7 高速離心機 29 3.1.8 冷凍乾燥機 29 3.1.9 熱重分析儀 30 3.2 實驗製備 30 3.2.1 藥品準備 30 3.2.2 網版印刷電極 30 3.2.3 氧化石墨烯的製備 31 3.2.4 冷凍乾燥氧化石墨稀的製備 31 3.2.5 熱衝擊石墨烯的製備 32 3.2.6 氮摻雜石墨烯的製備 32 3.2.7 環氧丙醇/氮摻雜石墨烯複合材料的製備 32 3.2.8 碳酸鈉/環氧丙醇/氮摻雜石墨烯複合材料的製備 33 3.2.9 感測電極的製備 33 3.3 氣體感測之測量基準 33 3.3.1 感測靈敏度 34 3.3.2 響應時間及回復時間 34 3.4 氣體感測系統 34 3.4.1 氣體感測系統的架構 34 3.4.2 二氧化碳濃度之計算 35 3.4.3 模擬室溫下大氣中二氧化碳濃度感測之操作流程 35 3.5 呼氣感測系統 36 3.5.1 濕度系統與操作流程 36 3.5.2 呼氣實驗與操作流程 36 第四章 結果與討論 41 4.1 tsGO之結構與成分分析 41 4.1.1 X光繞射光譜分析 41 4.1.2熱重分析 42 4.1.3掃描電子顯微鏡之形貌分析 42 4.1.4 拉曼光譜儀鍵結分析 43 4.1.5 傅立葉轉換紅外光譜分析 43 4.2 NGO之結構與成分分析 44 4.2.1掃描電子顯微鏡之形貌分析 44 4.2.2拉曼光譜儀鍵結分析 45 4.2.3傅立葉轉換紅外光譜分析 46 4.2.4 熱重分析 46 4.2.5 X射線電子能譜儀分析 47 4.3 Na2CO3-PEP-NGO之結構與成分分析 47 4.3.1掃描電子顯微鏡之形貌分析 47 4.3.2 X光繞射光譜分析 48 4.3.2 傅立葉轉換紅外光譜分析 49 4.3.3 熱重分析儀分析 49 4.3.4 X射線電子能譜儀分析 50 4.4 比較組之形貌與成分分析 51 4.4.1 掃描電子顯微鏡之形貌分析 51 4.4.2 傅立葉轉換紅外光譜分析 51 4.4.3 X光繞射光譜分析 52 4.5 室溫大氣環境下之二氧化碳感測 53 4.5.1 塗佈參數之影響分析 53 4.5.2 逐層複合材料之影響分析 53 4.5.3 不同CO2濃度下之結果分析 55 4.5.4 相同CO2濃度下之循環感測分析 55 4.5.6 二氧化碳氣體感測提升之可能機制 56 4.6 呼氣感測 58 4.6.1 不同濕度下之感測結果 58 4.6.2 實際人體呼氣之循環感測結果 59 4.7 群體實驗 61 第五章 結論 85 參考文獻 86

    [1] McGuinness, A.J. and E. Sapey, Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. J Clin Med, 2017. 6(2).
    [2] Byrne, A.L., et al., Peripheral venous blood gas analysis versus arterial blood gas analysis for the diagnosis of respiratory failure and metabolic disturbance in adults. Cochrane Database of Systematic Reviews, 2013.
    [3] <Oral progesterone treatment in chronic obstructive lung disease failure of voluntary hyperventilation to predict response..pdf>.
    [4] <The sudden infant death syndrome.pdf>.
    [5] Cheng, S.L., et al., COPD in Taiwan: a National Epidemiology Survey. Int J Chron Obstruct Pulmon Dis, 2015. 10: p. 2459-67.
    [6] Hang, L.W., et al., Predictive factors warrant screening for obstructive sleep apnea in COPD: a Taiwan National Survey. Int J Chron Obstruct Pulmon Dis, 2016. 11: p. 665-73.
    [7] Liao, H., et al., Efficacy of long-term noninvasive positive pressure ventilation in stable hypercapnic COPD patients with respiratory failure: a meta-analysis of randomized controlled trials. Int J Chron Obstruct Pulmon Dis, 2017. 12: p. 2977-2985.
    [8] Uppe, A., Factors Predicting Treatment Outcome in Hospitalized Patients with Acute Exacerbation of COPD (AECOPD). American Journal of Internal Medicine, 2018. 6(4).
    [9] McKeever, T.M., et al., Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study. Thorax, 2016. 71(3): p. 210-5.
    [10] Stoller, M.D., et al., Graphene-based ultracapacitors. Nano letters, 2008. 8(10): p. 3498-3502.
    [11] Yazdi, G.R., T. Iakimov, and R. Yakimova, Epitaxial graphene on SiC: a review of growth and characterization. Crystals, 2016. 6(5): p. 53.
    [12] Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
    [13] Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
    [14] Chen, J.-H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nature nanotechnology, 2008. 3(4): p. 206-209.
    [15] Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid state communications, 2008. 146(9-10): p. 351-355.
    [16] Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
    [17] Wei, L., et al., Thermal conductivity of isotopically modified single crystal diamond. Physical review letters, 1993. 70(24): p. 3764.
    [18] Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nature materials, 2011. 10(8): p. 569-581.
    [19] Novoselov, K.S., et al., A roadmap for graphene. nature, 2012. 490(7419): p. 192-200.
    [20] Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    [21] Strudwick, A.J., et al., Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. ACS nano, 2015. 9(1): p. 31-42.
    [22] Kalita, G. and M. Tanemura, Fundamentals of Chemical Vapor Deposited Graphene and Emerging Applications. Graphene Materials-Advanced Applications, 2017.
    [23] Singh, R.K., R. Kumar, and D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. Rsc Advances, 2016. 6(69): p. 64993-65011.
    [24] Rowley-Neale, S.J., et al., An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 2018. 10: p. 218-226.
    [25] Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the american chemical society, 1958. 80(6): p. 1339-1339.
    [26] Brodie, B.C., XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 1859(149): p. 249-259.
    [27] Rella, S., et al., X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method. Vacuum, 2015. 119: p. 159-162.
    [28] Compton, O.C. and S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. small, 2010. 6(6): p. 711-723.
    [29] Stankovich, S., et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 2007. 45(7): p. 1558-1565.
    [30] Zaaba, N.I., et al., Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering, 2017. 184: p. 469-477.
    [31] Kostoglou, N., et al., Synthesis of nanoporous graphene oxide adsorbents by freeze-drying or microwave radiation: Characterization and hydrogen storage properties. International Journal of Hydrogen Energy, 2015. 40(21): p. 6844-6852.
    [32] De Heer, W.A., et al., Epitaxial graphene electronic structure and transport. Journal of Physics D: Applied Physics, 2010. 43(37): p. 374007.
    [33] Van Bommel, A., J. Crombeen, and A. Van Tooren, LEED and Auger electron observations of the SiC (0001) surface. Surface Science, 1975. 48(2): p. 463-472.
    [34] Liu, B., et al., Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: efficient charge transfer and enhanced photo-Fenton catalytic activity. Applied Surface Science, 2017. 422: p. 607-615.
    [35] Zhou, D., et al., NiCoFe‐Layered Double Hydroxides/N‐Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 2018. 8(9): p. 1701905.
    [36] Zhang, B., et al., Poly (N‐vinylcarbazole) chemically modified graphene oxide. Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(12): p. 2642-2649.
    [37] Zhang, J. and X.S. Zhao, Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. The Journal of Physical Chemistry C, 2012. 116(9): p. 5420-5426.
    [38] Halacheva, S., S. Rangelov, and C. Tsvetanov, Poly (glycidol)-based analogues to pluronic block copolymers. Synthesis and aqueous solution properties. Macromolecules, 2006. 39(20): p. 6845-6852.
    [39] Wu, Y., et al., Tuning the surface properties of graphene oxide by surface-initiated polymerization of epoxides: an efficient method for enhancing gas separation. ACS applied materials & interfaces, 2017. 9(5): p. 4998-5005.
    [40] dos Santos, J.C., et al., Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polymer Testing, 2018. 67: p. 533-544.
    [41] Kasikowski, T., R. Buczkowski, and E. Lemanowska, Cleaner production in the ammonia–soda industry: an ecological and economic study. Journal of environmental management, 2004. 73(4): p. 339-356.
    [42] Steinhauser, G., Cleaner production in the Solvay Process: general strategies and recent developments. Journal of Cleaner Production, 2008. 16(7): p. 833-841.
    [43] Wisniak, J., Sodium carbonate—From natural resources to Leblanc and back. 2003.
    [44] Wolfbeis, O.S., Fiber-optic chemical sensors and biosensors. Analytical chemistry, 2002. 74(12): p. 2663-2678.
    [45] Bakker, E. and M. Telting-Diaz, Electrochemical sensors. Analytical chemistry, 2002. 74(12): p. 2781-2800.
    [46] Tonezzer, M., et al., Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor. Sensors and Actuators B: Chemical, 2018. 255: p. 2785-2793.
    [47] Donarelli, M. and L. Ottaviano, 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors, 2018. 18(11): p. 3638.
    [48] Miller, D.R., S.A. Akbar, and P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 2014. 204: p. 250-272.
    [49] Harsányi, G., Polymer films in sensor applications: a review of present uses and future possibilities. Sensor Review, 2000. 20(2): p. 98-105.
    [50] Llobet, E., Gas sensors using carbon nanomaterials: A review. Sensors and Actuators B: Chemical, 2013. 179: p. 32-45.
    [51] Toda, K., R. Furue, and S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review. Anal Chim Acta, 2015. 878: p. 43-53.
    [52] Fan, X., et al., Humidity and CO2 gas sensing properties of double-layer graphene. Carbon, 2018. 127: p. 576-587.
    [53] Willa, C., et al., Lightweight, Room-Temperature CO2Gas Sensor Based on Rare-Earth Metal-Free Composites—An Impedance Study. ACS Applied Materials & Interfaces, 2017. 9(30): p. 25553-25558.
    [54] Lu, G., L.E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009. 20(44): p. 445502.
    [55] Wu, J., et al., Boosted sensitivity of graphene gas sensor via nanoporous thin film structures. Sensors and Actuators B: Chemical, 2018. 255: p. 1805-1813.
    [56] Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-5.
    [57] Leenaerts, O., B. Partoens, and F.M. Peeters, Adsorption ofH2O,NH3, CO,NO2, and NO on graphene: A first-principles study. Physical Review B, 2008. 77(12).
    [58] Meng, F.-L., Z. Guo, and X.-J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends in Analytical Chemistry, 2015. 68: p. 37-47.
    [59] Karaduman, I., et al., Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles. Journal of Alloys and Compounds, 2017. 722: p. 569-578.
    [60] Hangarter, C.M., et al., Hybridized conducting polymer chemiresistive nano-sensors. Nano Today, 2013. 8(1): p. 39-55.
    [61] Bai, H., et al., Graphene oxide/conducting polymer composite hydrogels. Journal of Materials Chemistry, 2011. 21(46).
    [62] Zhang, L., et al., A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sensors and Actuators B: Chemical, 2009. 142(1): p. 204-209.
    [63] Jang, W.-K., et al., Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid and Polymer Science, 2012. 291(5): p. 1095-1103.
    [64] Tung, T.T., et al., Hybrid film of chemically modified graphene and vapor-phase-polymerized PEDOT for electronic nose applications. Organic Electronics, 2013. 14(11): p. 2789-2794.
    [65] Gupta Chatterjee, S., et al., Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B: Chemical, 2015. 221: p. 1170-1181.
    [66] Wang, Z., et al., Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl Mater Interfaces, 2014. 6(6): p. 3888-95.
    [67] Chen, N., et al., Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensors and Actuators B: Chemical, 2013. 188: p. 902-908.
    [68] Barnes, P.J., Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2016. 138(1): p. 16-27.
    [69] Najafi, F. and M. Rajabi, Thermal gravity analysis for the study of stability of graphene oxide–glycine nanocomposites. International Nano Letters, 2015. 5(4): p. 187-190.
    [70] <Graphene oxide synthesized by using modified hummers approach.pdf>.
    [71] 71. Sengupta, I., et al., Thermal reduction of graphene oxide: How temperature influences purity. Journal of Materials Research, 2018. 33(23): p. 4113-4122.
    [72] Sun, L., et al., Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. Rsc Advances, 2012. 2(10): p. 4498-4506.
    [73] López-Marzo, A., J. Pons, and A. Merkoçi, Controlled formation of nanostructured CaCO3–PEI microparticles with high biofunctionalizing capacity. Journal of Materials Chemistry, 2012. 22(30).
    [74] Cai, T., et al., Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 2020. 395.
    [75] Cai, Y., et al., Effective Capture of Carbon Dioxide Using Hydrated Sodium Carbonate Powders. Materials (Basel), 2018. 11(2).
    [76] Luo, H. and H. Kanoh, Fundamentals in CO2 capture of Na2CO3 under a moist condition. Journal of Energy Chemistry, 2017. 26(5): p. 972-983.
    [77] Rodríguez-Mosqueda, R., E.A. Bramer, and G. Brem, CO2 capture from ambient air using hydrated Na2CO3 supported on activated carbon honeycombs with application to CO2 enrichment in greenhouses. Chemical Engineering Science, 2018. 189: p. 114-122.

    QR CODE