研究生: |
劉冠廷 Liu, Guan-Ting |
---|---|
論文名稱: |
質子治療射程驗證用康普吞攝影機最佳化研究 Optimization of a Compton Camera for Proton Range Verification |
指導教授: |
莊克士
Chuang, Keh-Shih 詹美齡 Jan, Mee-Ling |
口試委員: |
林信宏
Lin, Hisn-Hon 蕭穎聰 Hsiao, Ing-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 質子治療 、射程驗證 、康普吞攝影機 |
外文關鍵詞: | Proton Therapy, Range Verification, Compton Camera |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
質子治療為近年來相當新興的放射治療技術。與傳統的光子治療比較,因質子射束存在著布拉格峰的物理特性,可使射束的最大劑量沈積於腫瘤組織上,並大幅降低腫瘤周圍正常組織的傷害。然而,目前因質子射程的不確定性導致治療效果不佳,因此若能改善此射程不準確性,對臨床將有相當大的助益。
本研究目標為最佳化質子治療射程評估用的康普吞造影儀(Compton Camera)希望藉由模擬質子進入人體後產生的瞬發光子(prompt gamma),以達到降低射程不準確的效果。
在實驗上,我們使用GATE/GEANT4蒙地卡羅軟體模擬prompt gamma的特徵能量,以不同能量入射不同材料的偵檢器組合。並改變Compton Camera的散射偵檢器以及吸收偵檢器厚度幾何,藉由考慮散射/吸收分率、散射/吸收效率、軸心誤差以及角度解析度來評估出最佳的幾何組合。
而實驗結果顯示散射偵檢器在材料LYSO與GAGG在厚度於25 mm下表現最佳,而CZT與LaBr3在厚度40 mm時也有最好的表現。在吸收偵檢器方面,厚度的上升雖然將使吸收效率提升,但卻會導致軸心誤差上升。另外若考慮到偵檢器電路輸出位置的判別,假設在實際硬體中無法正確判斷光子打到偵檢器的位置,將有機會使整體系統解析度更為下降。最後本研究利用角度解析度來評估散射層以及吸收層於最佳厚度狀況下的表現,由結果也顯示散射偵檢器或吸收偵檢器在最佳厚度下的系統效率或是角度解析度都表現的最為良好。整體而言,本研究所提出的最佳化幾何方法為可行的,不過由於偵檢器距離的變化同時會造成解析度以及效率的變化,因此只要能將兩者的表現達到最佳化,對於康普吞造影儀工具的開發將有莫大助益,期望此套康普吞造影儀能在臨床質子治療射程評估中提供更精準的治療效果。
In recent years, proton therapy is an emerging radiotherapy technique. Compared with traditional photon-based radiotherapy, proton therapy has the Bragg peak which makes energy deposited maximum on the position of tumor. However, the planning position of Bragg peak remains uncertainty. It will lead to target underdose or normal tissue overdose. Therefore, monitoring and improving proton range is very important for proton therapy.
The aim of this study is to optimize the Compton Camera for proton range verification by detecting prompt gamma ray during proton therapy.
In this study, GATE/GEANT4 simulation platform will be used as a simulated tool. By considering detector’s fraction or efficiency and Absorber’s cone axis errors under prompt gamma characteristic energy to optimize the best Compton Camera system。
In the result, we propose the most suitable thickness from the study of evaluation each detector. And the proposed FOM for Absorber detector indicated that depth-of-interaction is promising to have capability of improving the spatial resolution. Finally, this study confirms the best detector’s thickness with utilizing Angular resolution measurement.
Andreyev, A., et al. 2012. "Study on the Spatial Resolution of Single and
Multiple Coincidences Compton Camera." IEEE Transactions on Nuclear Science 59 1920-1926
Baum K G and Helguera M 2007 Execution of the SimSET Monte Carlo
PET/SPECT simulator in the condor distributed computing environment Journal of digital imaging 20 Suppl 1 72-82
Erwin, W. D. 2013. "Physics in Nuclear Medicine." Journal of Nuclear
Medicine 54(7): 1168-1168.
Frandes, M., et al. 2010. "A Tracking Compton-Scatterings Imaging System
for Hadron Therapy Monitoring." IEEE Transactions on Nuclear Science 57 144-150
Gueth, P., et al. 2013. "Machine learning-based patient specific prompt-
gamma dose monitoring in proton therapy." Physics in medicine and biology 58(13): 4563-4577.
Hilaire, E., et al. 2016. "Proton therapy monitoring by Compton imaging:
influence of the large energy spectrum of the prompt-gamma radiation." Physics in medicine and biology 61(8): 3127-3146.
Kang, B.-H. and J.-W. Kim 2009. "Monte Carlo Design Study of a Gamma
Detector System to Locate Distal Dose Falloff in Proton Therapy." IEEE Transactions on Nuclear Science 56 46-50
Kim, Y.-H., et al. 2016. "Double-Layered CZT Compton Imager." IEEE
Transactions on Nuclear Science PP 1-1.
Kishimoto, A., et al. 2015. "Demonstration of three-dimensional imaging
based on handheld Compton camera." Journal of Instrumentation 10(11):
P11001-P11001.
Kormoll, T., et al. 2011. "A Compton imager for in-vivo dosimetry of proton
beams—A design study." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 626-627: 114-119.
Kuhn, A., et al. 2006. "Performance Assessment of Pixelated LaBr3
Detector Modules for Time-of-Flight PET." IEEE Transactions on
Nuclear Science 53 1090-1095
Lee, E., et al. 2014. "Study of the Angular Dependence of a Prompt Gamma
Detector Response during Proton Radiation Therapy." International Journal of Particle Therapy 1(3): 731-744.
Lee, W., et al. 2016. "Mini Compton Camera Based on an Array of Virtual
Frisch-Grid CdZnTe Detectors." IEEE Transactions on Nuclear Science
63 259-265
L.E.Sinclair, et al. 2008. "Simulations of a Scintillator Compton Gamma
Imager for Safety and Security. IEEE Transactions on Nuclear Science 63 1262-1268
Lin, H.-H, Chuang K S,Ni Y C and Jan M L 2011 Efficient simulation of non-
pure positron emitters in GATE embedded with SimSET multiple photon history generator IEEE Nuclear Science Symposium and Medical Imaging Conference
Lin, H.-H., et al. 2016. "A comparison of two prompt gamma imaging
techniques with collimator-based cameras for range verification in proton therapy." Radiation Physics and Chemistry.
Mackin, D., et al. 2012. "Evaluation of a stochastic reconstruction algorithm
for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy." Physics in medicine and biology 57(11): 3537-3553.
Martin, J. B., et al. 1993. "A ring Compton Camera for Imaging Medium
Energy Gamma Rays." IEEE Transactions on Nuclear Science 40 972-978.
McCleskey, M., et al. 2015. "Evaluation of a multistage CdZnTe Compton
camera for prompt γ imaging for proton therapy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 785 163-169.
Min, C. H., Lee, H. R., Kim, C. H. and Lee, S. B. (2012), Development of
array-type prompt gamma measurement system for in vivo range verification in proton therapy. Med. Phys., 39: 2100–2107. DOI:10.1118/1.3694098
Moteabbed, M., et al. 2011. "Monte Carlo patient study on the comparison
of prompt gamma and PET imaging for range verification in proton therapy." Physics in medicine and biology 56(4): 1063-1082.
Mundy, D. W. and M. G. Herman 2010. "Uncertainty analysis of a Compton
camera imaging system for radiation therapy dose reconstruction." Med Phys 37(5): 2341-2350.
Nurdan, T. C., et al. 2015. "Design criteria for a high energy Compton
Camera and possible application to targeted cancer therapy." Journal of Instrumentation 10(07): C07018-C07018.
Ordonez, C. E., et al. 1998. "Dependence of Angular Uncertainties on the
Energy Resolution of Compton Camera." IEEE: 1122-1125. DOI:10.1109/NSSMIC. 1997.670505
Ordonez, C. E., et al. 1999. "Angular Uncertainties due to Geometry and
Spatail Resolution in Compton Cameras." IEEE Transactions on Nuclear Science 46 1142-1147
Ortega, P. G., et al. 2015. "Noise evaluation of Compton camera imaging for
proton therapy." Physics in medicine and biology 60(5): 1845-1863.
Park, J. H., et al. 2012. "Monte Carlo simulations on performance of double-
scattering Compton camera." Journal of Instrumentation 7(01): C01009-C01009.
PARTOVI, F. 1964. "Deutron Photodistintegration and N-P Capture below
Pion Production Threshold." ANNALS OF PHYSICS 27: 79-113.
Peterson, S. W., et al. 2010. "Optimizing a three-stage Compton camera for
measuring prompt gamma rays emitted during proton radiotherapy." Physics in medicine and biology 55(22): 6841-6856.
P. G. Ortega, I. T.-E. M., IEEE, T. T. Bohlen, F. Cerutti, M. P. W. Chin, A.
Ferrari, J.E. Gillam,C. Lacasta,G.Llosa,J. Oliver, M. Rafecas,P.R. Sala 2013. "Noise evaluation of prompt-gamma technique for proton therapy range verification using a Compton Camera." IEEE Nuclear Science Symposium and Medical Imaging Conference
Phillips G W 1995 Gamma-ray imaging with Compton Cameras Nuclear
Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 99 674-677
Polf, J. C., et al. 2009. "Measurement and calculation of characteristic
prompt gamma ray spectra emitted during proton irradiation." Physics in
medicine and biology 54(22): N519-527.
Richard, M.-H., et al. 2011. "Design Guidelines for a Double Scattering
Compton Camera for Prompt Imaging During Ion Beam Therapy" IEEE Transactions on Nuclear Science 58 87-94
Richard, M.-H., et al. 2012. "Design study of the absorber detector of a
compton camera for on-line control in ion beam therapy." IEEE Transactions on Nuclear Science 59 1850-1855.
Robertson, D., et al. 2011. "Material efficiency studies for a Compton
camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy." Physics in medicine and biology 56(10): 3047-3059.
Roellinghoff, F., et al. 2011. "Design of a Compton camera for 3D prompt-
imaging during ion beam therapy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 648 S20-S23.
Rohling, H., et al. 2015. "Simulation Study of a Combined Pair Production-
Compton Camera for In-Vivo Dosimetry During Thetapeutic Proton Irradiation." IEEE Transactions on Nuclear Science 62.
Rohling, H., et al. 2017. "Requirements for a Compton camera for in vivo
range verification of proton therapy." Physics in medicine and biology 62(7): 2795-2811.
Schaart, D. R., et al. 2010. "LaBr3:Ce and SiPMs for time-of-flight PET:
achieving 100 ps coincidence resolving time." Physics in medicine and
biology 55(7): N179-189.
Schmid, S., et al. 2015. "Monte Carlo study on the sensitivity of prompt
gamma imaging to proton range variations due to interfractional changes in prostate cancer patients." Physics in medicine and biology 60(24): 9329-9347.
Seo, H., et al. 2010. "Multitracing Capability of Double-Scattering Compton
Imager with NaI Scintillator Absorber.pdf." IEEE Transactions on Nuclear Science 57 1420-1425
Smeets, J., et al. 2012. "Prompt gamma imaging with a slit camera for real-
time range control in proton therapy." Physics in medicine and biology 57(11): 3371-3405.
Solevi, P., et al. 2016. "Performance of MACACO Compton telescope for
ion-beam therapy monitoring: first test with proton beams." Physics in medicine and biology 61(14): 5149-5165.
Takeda, S. i., et al. 2009. "Experimental Results of the Gamma-Ray Imaging
Capability with a Si/CdTe Semoconductor Compton Camera." IEEE Transactions on Nuclear Science 56 783-790
Takeuchi, K., et al. 2014. “Stereo Compton cameras” for the 3-D localization
of radioisotopes." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 765 187-191.
Taya, T., et al. 2016. "First demonstration of real-time gamma imaging by
using a handheld Compton camera for particle therapy." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 831 355-361.
Tumer, T. O., et al. 1997. "A High Sensitivity, Electronically Collimated
Gamma Camera." IEEE Transactions on Nuclear Science 44 899-904.
Uche, C. Z., et al. 2011. "A Monte Carlo evaluation of three Compton
camera absorbers." Australas Phys Eng Sci Med 34(3): 351-360.
Verburg, J. M. and J. Seco 2014. "Proton range verification through prompt
gamma-ray spectroscopy." Physics in medicine and biology 59(23): 7089-7106.
Yang, Y. F., et al. 2001. "Compton Camera for Multiracer Imaging." IEEE
Transactions on Nuclear Science 48 656-661
Zoglauer, A., et al. 2003. "Doppler Broadening as a Lower Limit to the
Angular Resolution of Next Generation Compton Telescopes." X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy. DOI:10.1117/12.461177