簡易檢索 / 詳目顯示

研究生: 謝定澄
Xie, Ding-Cheng
論文名稱: 六年級學生在臆測教學下數學創造力的表現
The Performance of Sixth Grade Students' Mathematical Creativity under Conjecturing Teaching in Mathematics
指導教授: 林碧珍
Lin, Pi-Jen
口試委員: 蔡文煥
蔡寶桂
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 108
中文關鍵詞: 數學臆測任務數學創造力數學創造力評分架構
外文關鍵詞: mathematics conjecturing tasks, mathematics creativity, evaluation tool
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究目的是探究六年級學生在數學臆測任務中,不同單元的數學創造力的表現。本研究的個案導師是具有臆測教學經驗十年的國小教師,此班級學生從五年級起接觸臆測教學。研究資料的蒐集,主要來自個案教師所設計的數量關係單元及圓面積單元臆測任務課堂,學生的個人造例單、小組彙整工作單,及個人、小組、全班猜想。本研究是以林碧珍(2020)學生在素養導向臆測任務表現的數學創造力評量架構為依據,該架構以學生猜想的流暢性、變通性、原創性、精緻性來評估學生的數學創造力表現。
      初步研究結果發現:全班學生在圓面積單元的數學創造力總分高於數量關係單元,但兩單元數學創造力t考驗表現沒有顯著不同,而兩單元原創性分數最高的組別創造力分數也最高。流暢性表現上,兩單元t考驗達到顯著不同,圓面積單元相較數量關係單元有助於學生提出較多的猜想數量;變通性表現上,兩單元t考驗達到顯著不同,圓面積單元相較數量關係單元有助於學生提出較多的猜想類別;原創性與精緻性表現兩單元沒有顯著不同。而在猜想內容類型的部分,圓面積單元有助於學生提出策略型猜想;數量關係單元則有助於學生提出關係型猜想。


      The main purpose of this research is to study the mathematics creativity of 6th grades students in mathematics conjecturing tasks to understand how two different chapters have impact on student’s performance. The elementary school teacher in this research is one with conjecturing instructions experience for over ten years, and the students joined in mathematics conjecturing instruction from 5th grades. The way that this research collected data is mainly based on the conjecturing teaching of the relation of numbers and the relation of circle area which are designed by the teacher in this class. We can get student’s personal study list, group consolidation work post, and ‘personal, group, as well as whole class conjecturing’. This research is according to Dr. Lin Pijen’s evaluation structures of mathematics creativity. This evaluation structures are according to fluency, flexibility, originality and elaboration to evaluate students’ performance of mathematics creativity.
      The preliminary results are found as follows: The sum of whole student’ grades get higher in the relation of circle area than the relation of numbers, but there is no significant difference from t-testing for mathematics creativity. In both two chapters, the group which gets higher originality score also has higher creativity score. In the performance of fluency, the result of t-testing for two chapters are significant difference, and the chapter of relation of circle area is much more helpful for students to provide more conjecturing than relation of numbers. In the performance of flexibility, the result of t-testing is obvious difference between the relation of numbers and the relation of circle area, the chapter of relation of circle area is also much more helpful for students to provide more conjecturing than relation of numbers. In the performance of originality and elaboration, the result of t-testing is no significant difference between the relation of numbers and the relation of circle area. About the content of conjecturing type, the relation of circle area is much more helpful for students to provide strategic conjecturing. The relation of numbers is much more helpful for students to provide relative conjecturing.

    摘要 謝誌 目錄 第一章 緒論------------1 第二章 文獻探討--------7 第三章 研究方法--------47 第四章 研究結果--------65 第五章 結論與建議------97 參考文獻--------------102

    ● 中文文獻
    林碧珍(2020)。學生在素養導向臆測任務與實踐表現的數學創造力評量架構。2020年第十一屆教育創新國際學術研討會(2020 The Eleventh International Conference on Educational Innovation)。
    林碧珍(2020)。學生在臆測任務課堂表現的數學創造力評量。科學教育學刊。28(S),429-455。
    林碧珍主編(2021)。素養導向數學臆測教學模式之理論與實務。台北市:師大書苑。
    林碧珍主編(2019)。數學臆測任務設計與實踐:整數、分數與小數篇。台北市:師大書苑。
    林碧珍(2020)。素養導向的臆測教學模式。小學教學(數學版),1,8-11。
    林碧珍、鄭俊彥、蔡寶桂(2018)。國小六年級學生數學論證評量工具之建構。測驗學刊。65(3),257-290。
    林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
    林碧珍(2020)。國小學生在數學臆測教學課堂展現的證明:以兩數的最大公因數和最小公倍數性質為例。小學教學(數學版),1,12-16。
    林碧珍(2020)。素養導向評量的「真實」情境?是對解題者?還是對情境本身?央團一、二月數學月刊,15。
    林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐:以發展學童的數學論證為例。教科書研究,9(1),109-134。
    林碧珍(2019)。分數在教材中的不同意義。小學教學(數學版), 4,4-8。
    林碧珍(2018)。數學臆測引動數學論證 的課堂實踐(上)。小學教學(數學版),4,4-7。
    林碧珍(2018)。素養之我見我行。央團十一月數學月刊。
    林碧珍(2010b)。比與比值初始概念教學的初探。國立新竹教育大學教育學報, 27(1),127-160。
    林碧珍、陳姿靜(2006)。分數乘法之教材與教學。國立新竹師範學院九十五學 年度教育輔導叢書(75):2006地方教育輔 導論文集(pp.109-124)。
    林碧珍(2018)。數學臆測引動數學論證的課堂實踐(下)。小學教學(數學版),5,4-8。
    陳正曄 (2020)。在數學臆測教學下學生數學創造力的展現。國立清華大學碩士論文。
    徐翊菁 (2021)。數學臆測教學引發學生論證之教師提問研究。國立清華大學碩士論文。
    黃立綺 (2020)。六年級數學低成就個案在臆測教學之提出猜想階段的表現。國立清華大學碩士論文。
    張廖珮鈺(2019)。數學臆測教學的教師角色之研究。國立清華大學碩士論文。
    張芸夢(2021)。台灣中學生數學創造力之研究。國立清華大學碩士論文。
    劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊,2(1),23-40。
    梁朝雲(2013)。天生設計師?學生人格特質透過想像力的仲介以預測創造力。教育研究,235,48-65。
    楊坤原(2001)。創造力的意義及其影響因素簡介。科學教育月刊,239,3-12.
    張華城&洪文東(2004)。國小學童數學創造力與科學創造力之相關性及差異性研究。科學教育研究與發展季刊,2004。
    吳衛東,林碧珍, & 章勤瓊(2018)。變學科邏輯為教學邏輯:臺灣「素養導向臆測教學模式」的教育學審視。教育發展研究。20,62-67。
    林千瑜,&丁健平(2015)。以小學教師角色談高層次思考。臺灣教育評論月刊,4(6),130-133。
    教育部(2002)。創造力教育白皮書。台北:教育部。

    ● 外文文獻

    Leikin, R., & Elgrably, H. (2020). Problem posing through investigations for the development and evaluation of proof-related skills and creativity skills of prospective high school mathematics teachers. International Journal of Educational Research, 102, 101424.
    Leikin, R. (2018). Openness and constraints associated with creativity-directed activities in mathematics for all students. In.Broadening the scope of research on mathematical problem solving(pp. 387-397). Springer, Cham.
    Leikin, R. (2019). Stepped tasks: Top-down structure of varying mathematical challenge. In Problem solving in mathematics instruction and teacher professional development(pp. 167-184). Springer, Cham.
    Leikin, R. (2014). Challenging mathematics with multiple solution tasks and mathematical investigations in geometry. In Transforming mathematics instruction(pp. 59-80). Springer, Cham.
    Leikin, R. (2016). Interplay between creativity and expertise in teaching and learning of mathematics. In Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education(Vol. 1, pp. 19-34).
    Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight1. Psychological Test and Assessment Modeling,55(4), 385.
    Leikin,R.,&Lev,M.(2013). Mathematical creativity in generally gifted and mathematically excelling adolescents:What makes the difference?Zdm, 45(2), 183-197.
    Leikin, R., Subotnik, R., Pitta-Pantazi, D., Singer, F. M., & Pelczer, I. (2013). Teachers’ views on creativity in mathematics education: an international survey. Zdm,45(2), 309-324.
    Lev, M., & Leikin, R. (2013, January). The connection between mathematical creativity and high ability in mathematics. In Proceedings of the Eight Congress of the European Society for Research in Mathematics Education (CERME8) (pp. 1204-1213).
    Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education,17(1), 20-36.
    Haylock, D. W. (1987). A framework for assessing mathematical creativity in school chilren. Educational studies in mathematics,18(1), 59-74.
    Haavold, P. Ø. (2018). An empirical investigation of a theoretical model for mathematical creativity. The Journal of Creative Behavior,52(3), 226-239.
    Bokhove, C., & Jones, K. (2018). Stimulating mathematical creativity through constraints in problem-solving. In Broadening the scope of research on mathematical problem solving (pp. 301-319). Springer, Cham.
    Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
    Amabile, T. M., Collins, M. A., Conti, R., Phillips, E., Picariello, M., Ruscio, J., & Whitney, D. (2018). Creativity in context: Update to the social psychology of creativity. Routledge.
    Yeo, J. B. (2017). Development of a framework to characterise the openness of mathematical tasks. International Journal of Science and Mathematics Education, 15(1), 175-191.
    Masalimova, A. R., Mikhaylovsky, M. N., Grinenko, A. V., Smirnova, M. E., Andryushchenko, L. B., Kochkina, M. A., & Kochetkov, I. G. (2019). The interrelation between cognitive styles and copying strategies among student youth. Eurasia Journal of Mathematics,Science and Technology Education, 15(4), em1695.
    Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: implications for assessment of mathematical creativity. ZDM, 49(1), 37-52.
    Fullan, M., & Langworthy, M. (2014). A rich seam: How new pedagogies find deep learning.

    QR CODE