簡易檢索 / 詳目顯示

研究生: 李季恆
Lee, Chi-Heng.
論文名稱: 基於使用者可定義儲存系統之多階層資料容錯管理機制
Enabling Multi-level Data Fault-tolerant Management on User-defined Storage System
指導教授: 石維寬
Shih, Wei-Kuan
口試委員: 黃能富
Huang, Nen-Fu
張原豪
Chang, Yuan-Hao
涂嘉恆
Tu, Chia-Heng
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 15
中文關鍵詞: 資料容錯使用者定義儲存裝置多階層資料容錯
外文關鍵詞: Data Fault Tolerance, User Defined Storage, Multilevel Data Fault Tolerance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於現今的資料容錯機制,都是把資料和產生出來的校驗碼放在同一組硬碟上,也就是說,當使用者想採取不同的資料容錯機制的時候,就必須使用新的一組硬碟。這樣的情況下,造成硬碟空間利用低,而且在硬碟的數量有限下,使用者無法使用兩種以上的資料容錯技術。

    本論文在單機電腦上,以檔案的位置作為區分,實施了兩種不同的資料容錯技術。而且讓使用者在有限的硬碟數量下,更加彈性地決定對資料的存放,並且讓資料的重要性由使用者自己來定義,藉此在硬碟的空間利用率和校驗碼計算速度之間取得一個平衡。


    Nowadays, the data fault-tolerant technique is to put data and erasure code in the same disk group. When a user would like to use another data fault-tolerant technique, he must use a new group of disks. In the situation, the disk utilization is very low, and a user cannot manipulate more than two kinds of data fault-tolerant technique with finite disks.

    This thesis constructs a hybrid data fault-tolerant system by distinguish the different location of files in a stand-alone computer. A user can decide how to store data elastically, and define the importance of data by himself, for getting a balance between the disk utilization and the execution speed of erasure code calculation.

    第一章 介紹 1 第二章 背景介紹 3 2.1 Raid機制 3 2.2 LRC機制 4 第三章 系統架構 6 3.1系統概觀 6 3.2裝置映射 7 3.3 ext4檔案系統的程序流程 8 3.4區塊層的程序流程 9 3.5硬碟位置映射 11 第四章 實驗 12 4.1系統規格 12 4.2實驗數據 12 第五章 結論 14 附錄 15

    [1] The fundamentals of software-defined storage simplicity at scale for cloud architectures. Technical report, Coraid Inc, 2015. Report.
    [2] A. Alba, G. Alatorre, C. Bolik, A. Corrao, T. Clark, S. Gopisetty, and et al. Efficient and agile storage management in software defined environments. IBM Journal of Research and Development, 2014.
    [3] W. C. Arnold, D. M. Chess, M. V. Devarakonda, A. Segal, and I. N. Whalley. Method for policy-based, autonomically allocated storage, Jan 2009.
    [4] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. ul Haq, M. I. ul Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas. Windows azure storage: a highly available cloud storage service with strong consistency. Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP 11, pages 143–157, 2011.
    [5] Kuo Sheng Deng, Chin Feng Lee, Jerry Chou, Yi Chen Shih, Shang Hao Chuang, and Po Hsuan Wu. pnfs-based software-defined storage for information lifecycle management. 2015 International Conference on Cloud Computing and Big Data (CCBD), pages 89–92, Nov 2015.
    [6] M. Devarakonda, D. Chess, I. Whalley, A. Segal, P. Goyal, A.Sachedina, and et al. Policy-based autonomic storage allocation. Self-Managing Distributed Systems, 2003.

    QR CODE